matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBruch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Bruch
Bruch < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruch: Reihe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:32 Mo 21.04.2008
Autor: DoktorQuagga

Aufgabe
Hallo, ich soll für eine Aufgabe aus dem Internet raussuchen, welche Formel für die foglende Summe gilt:
[mm] \summe_{i=1}^{n} \bruch{1}{a_i} [/mm]

Gegoogelt habe ich schon aber nichts gefunden_kann mir da jemand weiterhelfen?
D.Q.

        
Bezug
Bruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 Mo 21.04.2008
Autor: Zwerglein

Hi, DoktorQuagga,

> Hallo, ich soll für eine Aufgabe aus dem Internet
> raussuchen, welche Formel für die foglende Summe gilt:
>  [mm]\summe_{i=1}^{n} \bruch{1}{a_i}[/mm]
>  Gegoogelt habe ich schon
> aber nichts gefunden_kann mir da jemand weiterhelfen?
>  D.Q.

Solange Du die [mm] a_{i} [/mm] nicht kennst, kannst Du das auch nicht ausrechnen!

mfG!
Zwerglein

Bezug
                
Bezug
Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Mo 21.04.2008
Autor: DoktorQuagga

Aufgabe
Stimmt, ich meinte jetzt die Reihe positiver Zahlen, also:
[mm] \bruch{1}{1} [/mm] + [mm] \bruch{1}{2} [/mm] + [mm] \bruch{1}{3} [/mm] + ... + [mm] \bruch{1}{n}. [/mm]
Dazu gibt's doch bestimmt eine einfachere Formel, oder?
Sowie bei 1 + 2 + 3 + 4 + ... + n = [mm] \bruch{n(n+1)}{2} [/mm]
Dementsprechend muss es doch für die Summe [mm] \bruch{1}{1} [/mm] + [mm] \bruch{1}{2} [/mm] + [mm] \bruch{1}{3} [/mm] + ... + [mm] \bruch{1}{n} [/mm] auch eine Formel geben?!

D.Q.

Bezug
                        
Bezug
Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Mo 21.04.2008
Autor: Tyskie84

Hallo!

Such mal im Internet nach dem Begriff "harmonische Reihe". Damit findest du bestimmt etwas ansonsten kann du dich nochmal melden :-)

[hut] Gruß

Bezug
                                
Bezug
Bruch: THX
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Mo 21.04.2008
Autor: DoktorQuagga

Es gibt also nur einen Näherungswert_ok, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]