matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisBrown'sche Bewegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "stochastische Analysis" - Brown'sche Bewegung
Brown'sche Bewegung < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brown'sche Bewegung: Schauderbasis
Status: (Frage) beantwortet Status 
Datum: 14:15 So 30.03.2008
Autor: BertanARG

Aufgabe
[mm] (X_n) [/mm] unabhängige, N(0,1)-verteilte Folge von Zufallsvariablen auf [mm] \Omega, [/mm]
[mm] g_n(t) [/mm] sei die durch das Haar-System erzeugte Schauderbasis von C([0,1]).

Dann gilt:
[mm] (B_t)_{t\in[0,1]} [/mm] mit
[mm] B_t(\omega)=\summe_{n=0}^{\infty} X_n(\omega) g_n(t) [/mm]
ist eine Brown'sche Bewegung

Hi,

ich habe hier ein Verständnisproblem. Wenn ich z.B. die folgende Brown'sche Bewegung hätte, zu drei Zeitpunkten [mm] (t_0,t_1,t_2)=(0,\bruch{1}{2},1), [/mm] mit [mm] (B_t)=(\vektor{0 \\ 0},\vektor{\bruch{1}{3} \\ -\bruch{1}{6}}, \vektor{\bruch{1}{6} \\ -\bruch{1}{10}}), [/mm] kann ich sie nicht durch die obige Gleichung darstellen.

Denn für [mm] t\in \{0,\bruch{1}{2},1\} [/mm] gilt: [mm] g_n(t)=0. [/mm]

Für die, die das grad nicht auf die Schnelle wissen. Das Haar-System ist eine Treppenfunktion auf dem Intervall [0,1], das in [mm] 2^{n+1} [/mm] gleich große Teilintervalle zerlegt wird und dabei abwechselnd die Werte [mm] 2^{\bruch{n}{2}} [/mm] und [mm] -2^{\bruch{n}{2}} [/mm] annimmt.

Für n=2 hat man also 8 Teilintervalle mit der Länge [mm] \bruch{1}{8}, [/mm] wobei die Haarfunktion im ersten Teilintervall den Wert 4, dann -4, dann wieder 4, etc. annimmt.

Die Schauderbasis [mm] g_n [/mm] ist dann einfach das Integral über die Haar-Funktion. Sie steigt also linear bis zum Ende des ersten Teilintervalls auf den Wert 4, fällt dann im zweiten wieder auf 0, steigt dann wieder auf 4, etc. Es ist also quasi eine "Zackenfunktion".

Daraus folgt allerdings, dass [mm] g_n [/mm] an den oben genannten Stellen t stets Null sein muss. Also kann es keine Zufallsvariable [mm] X_n [/mm] geben, mit der die oben genannte Brown'sche Bewegung erzeugt werden kann.

Wo ist mein Denkfehler? Und wie kann ich mir den Satz stattdessen klarmachen?


Grüße

        
Bezug
Brown'sche Bewegung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Di 01.04.2008
Autor: Zneques


> $ [mm] (B_t)_{t\in[0,1]} [/mm] $ mit
> $ [mm] B_t(\omega)=\summe_{n=0}^{\infty} X_n(\omega) g_n(t) [/mm] $
> ist eine Brown'sche Bewegung

Das bedeutet, dass [mm] B_t [/mm] definiert durch
[mm] B_t(\omega) [/mm] := [mm] \summe_{n=0}^{\infty} X_n(\omega) g_n(t) [/mm]
eine Brownsche Bewegung ist.
Also [mm] B_0=0 [/mm] , [mm] B_t-B_s\sim\mathcal{N}(0,t-s) [/mm] unabh. , [mm] B_t [/mm] stetig müsste dann das zeigen.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]