matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBrauche Hilfe beim Beweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Brauche Hilfe beim Beweis
Brauche Hilfe beim Beweis < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brauche Hilfe beim Beweis: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:16 Sa 13.11.2010
Autor: SolRakt

[mm] I_{n} [/mm] = [mm] \integral_{-\infty}^{\infty}{x^{n} e^{-ax^{2}}} [/mm]

Man soll zeigen, dass für n [mm] \ge [/mm] 1 gilt.

Für n gerade:

[mm] I_{n} [/mm] = [mm] \bruch{n-1}{2a} \* I_{n-2} [/mm]

Für n ungerade:

[mm] I_{n} [/mm] = 0

Kann mir da jemand helfen. Habe gar keine Ahnung, wie man sowas macht.



        
Bezug
Brauche Hilfe beim Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Sa 13.11.2010
Autor: rainerS

Hallo!

> [mm]I_{n}[/mm] = [mm]\integral_{-\infty}^{\infty}{x^{n} e^{-ax^{2}}} dx[/mm]
>  
> Man soll zeigen, dass für n [mm]\ge[/mm] 1 gilt.
>  
> Für n gerade:
>
> [mm]I_{n}[/mm] = [mm]\bruch{n-1}{2a} \* I_{n-2}[/mm]

Wende partielle Integration an.

> Für n ungerade:
>  
> [mm]I_{n}[/mm] = 0

Für ungerade n ist der Integrand eine ungerade Funktion.

Viele Grüße
   Rainer


Bezug
                
Bezug
Brauche Hilfe beim Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Sa 13.11.2010
Autor: SolRakt

Wie soll denn da die partielle Integration aussehn?

Bezug
                        
Bezug
Brauche Hilfe beim Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Sa 13.11.2010
Autor: fred97

$ [mm] \integral_{}^{}{x^{n} e^{-ax^{2}}} [/mm] dx [mm] =\integral_{}^{}{x^{n-1} (xe^{-ax^{2}}}) [/mm] dx $

Setze $u'= [mm] xe^{-ax^{2}}$ [/mm]  und [mm] $v=x^{n-1} [/mm] $

FRED

Bezug
                                
Bezug
Brauche Hilfe beim Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 Sa 13.11.2010
Autor: SolRakt

Ok.

Dann muss man irgendwann zu x [mm] \* e^{-ax^{2}} [/mm] eine Stammfunktion bilden. Müsste man da wieder partielle Integration anwenden?

Bezug
                                        
Bezug
Brauche Hilfe beim Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Sa 13.11.2010
Autor: leduart

Hallo
differenzier mal [mm] e^{-ax^2} [/mm] kannst du dann [mm] x*e^{-ax^2} [/mm] integrieren?
Gruss leduart


Bezug
                                                
Bezug
Brauche Hilfe beim Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Sa 13.11.2010
Autor: SolRakt

Aber wie soll ich dazu dann eine Stammfunktion bilden, wenn man es nicht integrieren kann?

Bezug
                                                        
Bezug
Brauche Hilfe beim Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Sa 13.11.2010
Autor: fred97

Man kann es integrieren ! Mach doch mal einfach das , was man Dir rät !

FRED

Bezug
                                                                
Bezug
Brauche Hilfe beim Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Sa 13.11.2010
Autor: SolRakt

Sry. xD Ich kriege beim "normalen" Integrieren folgendes heraus:

[mm] -\bruch{1}{2a} \* e^{-ax^{2}} [/mm]

Bezug
                                                                        
Bezug
Brauche Hilfe beim Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Sa 13.11.2010
Autor: fred97


> Sry. xD Ich kriege beim "normalen" Integrieren folgendes
> heraus:
>  
> [mm]-\bruch{1}{2a} \* e^{-ax^{2}}[/mm]

Ja, das ist eine Stammfunktion von $ [mm] x\cdot{}e^{-ax^2} [/mm] $


FRED


Bezug
                                                                                
Bezug
Brauche Hilfe beim Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Sa 13.11.2010
Autor: SolRakt

Wenn ich jetzt partielle Integration ansetze, kommt aber folgendes heraus:

[mm] -\bruch{1}{2a} \* e^{-ax^{2}} \* x^{n-1} [/mm] - [mm] \integral_{}^{}{(n-1)x^{n-2} \* (-\bruch{1}{2a}e^{-ax^{2}} )} [/mm]

Aber was bringt mir das nun?

Bezug
                                                                                        
Bezug
Brauche Hilfe beim Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Sa 13.11.2010
Autor: leduart

Hallo
du behandest das bleibende Integral wie das Ausgangsintegral, bis du im Integral bei [mm] xe^{-x^2} [/mm] ankommst.
(mach ne Induktion, wenn du die formel siehst.)
Gruss leduart


Bezug
                                                                                                
Bezug
Brauche Hilfe beim Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Sa 13.11.2010
Autor: SolRakt

Kannst du das nochmal genauer erklären. Irgendwie versteh ich nicht, was du meinst. Sry.

Bezug
                                                                                                        
Bezug
Brauche Hilfe beim Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Sa 13.11.2010
Autor: leduart

Hallo
einfach das verbleibende Integral wieder partiell integrieren.
mit demselben Trick wie vorher.
Gruss leduart


Bezug
                                                                                                                
Bezug
Brauche Hilfe beim Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Sa 13.11.2010
Autor: SolRakt

Verstehe. Nur welchen Trick meinst du genau? Wie man das Integral umgeformt hat?

Bezug
                                                                                                                        
Bezug
Brauche Hilfe beim Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Sa 13.11.2010
Autor: leduart

Hallo
[mm] x^{n-2}*e^-{x^2}=x^{n-3}*(x*e^{-x^2}) [/mm]
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]