matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBorel-Maß bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Borel-Maß bestimmen
Borel-Maß bestimmen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borel-Maß bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Sa 06.06.2015
Autor: mimo1

Aufgabe
Gebe zu folgende maßdefinierende Funktionen die zugehörige Borel-Maße auf [mm] (\IR,\mathcal{B}) [/mm] an:

(i) [mm] G_1(x):=[x]:=max\{k\in\IZ\|k\le x}, x\in\IR [/mm]

(ii) [mm] G_2(x):= \begin{cases} 2x-k, & \mbox{falls } x\in [k,k+\bruch{1}{2}) \mbox{ } \\ k+1, & \mbox{falls } x\in [k+\bruch{1}{2},k+1) \mbox{ } \end{cases} [/mm]

Hallo zusammen,

ich sitze gerade vor diese Aufgabe und weiß nicht so recht wie ich anfangen soll.
Ich hoffe ihr könnt mir etwas auf die sprünge helfen.

Ich bin für jeden noch so kleinen Tipp dankbar.

Gruß,
mimo1

        
Bezug
Borel-Maß bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Sa 06.06.2015
Autor: fred97


> Gebe zu folgende maßdefinierende Funktionen die
> zugehörige Borel-Maße auf [mm](\IR,\mathcal{B})[/mm] an:
>  
> (i) [mm]G_1(x):=[x]:=max\{k\in\IZ\|k\le x}, x\in\IR[/mm]
>  
> (ii) [mm]G_2(x):= \begin{cases} 2x-k, & \mbox{falls } x\in [k,k+\bruch{1}{2}) \mbox{ } \\ k+1, & \mbox{falls } x\in [k+\bruch{1}{2},k+1) \mbox{ } \end{cases}[/mm]
>  
> Hallo zusammen,
>  
> ich sitze gerade vor diese Aufgabe und weiß nicht so recht
> wie ich anfangen soll.
>  Ich hoffe ihr könnt mir etwas auf die sprünge helfen.

Nimm dir die definition her !

Fred


>  
> Ich bin für jeden noch so kleinen Tipp dankbar.
>  
> Gruß,
>  mimo1


Bezug
                
Bezug
Borel-Maß bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:32 So 07.06.2015
Autor: mimo1

sorry dass ich mich so dumm stelle, aber die Definition bringt mir auch nicht weiter und das war auch das erste was ich geschaut.

"Zu jede maßdefinierende Funktion [mm] G:\IR\rightarrow \IR [/mm] gibt es genau eine Borel-Maß [mm] \mu_G [/mm] auf [mm] (\IR,\mathcal{B}) [/mm] mit

[mm] \mu_G((a,b])=G(b)-G(a) \all [/mm] a,b [mm] \in \IR [/mm] mit [mm] a\le [/mm] b
[mm] \mu_G [/mm] heißt das zugehörige Borel-Maß"

Wie fange am besten mit der aufgabe an? Könnt  ihr mir evtl einen Ansatz zeigen?

Bezug
                        
Bezug
Borel-Maß bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 09.06.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]