matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBorel-Cantelli
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Borel-Cantelli
Borel-Cantelli < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borel-Cantelli: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Sa 21.11.2015
Autor: fishy

Aufgabe
Ich wollte nur sicher gehen, dass ich folgenden Beweis richtig verstehe:
Lemma von Borel-Cantelli:

Sei [mm] (A_k)_{k= 1}^{\infty} [/mm] eine Folge von Ereignissen in einem Wahrscheinlichkeitsraum [mm] (\Omega, [/mm] F, P) und [mm] A:=\{\omega\in \Omega: \omega\in A_k \text{für unendlich viele}k\} [/mm]

(a) Ist [mm] \sum_{k=1}^{\infty} P(A_k)<\infty, [/mm] so ist P(A)=0





Also der Beweis sieht folgendermaßen aus.

[mm] \omega \in \Omega, [/mm] wenn zu jedem m ein [mm] k\geq [/mm] m existiert.
[mm] \Rightarrow A\subseteq \bigcup_{k= m}^{\infty} A_k. [/mm]

Unendlich viele bedeutet nicht, dass es eben ein m gibt, sodass dann für alle [mm] k\geq [/mm] m [mm] \omega\in A_k [/mm] ist, sondern es würde auch reichen wenn eben nur für alle [mm] k^2 \geq [/mm] m [mm] \omega \in A_k^2 [/mm] ist oder?


Dann kann man einfach die Monotonie von P ausnutzen und erhält:

[mm] P(A)\leq P(\bigcup_{k=m}^{\infty} A_k) \leq \sum_{k= m}^{\infty} P(A_k) [/mm] für alle m.

Im limes [mm] m\to \infty [/mm] strebt die Summe gegen 0, wenn [mm] \sum_{k= 1}^{\infty} P(A_k)<\infty. [/mm]

Also die Summe ist konvergent, da  [mm] \sum_{k\geq 1} P(A_k)<\infty [/mm] also geht die Folge der Partailsummen gegen 0. Das heißt für große m summiere ich nur noch 0en auf, sodass meine Wahrscheinlichkeit 0 ists oder verstehe ich das falsch?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Borel-Cantelli: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mo 23.11.2015
Autor: fred97


> Ich wollte nur sicher gehen, dass ich folgenden Beweis
> richtig verstehe:
>  Lemma von Borell-Cantelli:
>  
> Sei [mm](A_k)_{k= 1}^{\infty}[/mm] eine Folge von Ereignissen in
> einem Wahrscheinlichkeitsraum [mm](\Omega,[/mm] F, P) und
> [mm]A:=\{\omega\in \Omega: \omega\in A_k \text{für unendlich viele}k\}[/mm]






>  
> (a) Ist [mm]\sum_{k=1}^{\infty} P(A_k)<\infty,[/mm] so ist P(A)=0
>  
>
>
> Also der Beweis sieht folgendermaßen aus.
>  
> [mm]\omega \in \Omega,[/mm] wenn zu jedem m ein [mm]k\geq[/mm] m existiert.
>   [mm]\Rightarrow A\subseteq \bigcup_{k= m}^{\infty} A_k.[/mm]
>  
> Unendlich viele bedeutet nicht, dass es eben ein m gibt,
> sodass dann für alle [mm]k\geq[/mm] m [mm]\omega\in A_k[/mm] ist, sondern es
> würde auch reichen wenn eben nur für alle [mm]k^2 \geq[/mm] m
> [mm]\omega \in A_k^2[/mm] ist oder?



$w [mm] \in [/mm] A $ bedeutet: es ex. [mm] n_1,n_2,n_3,... \in \IN [/mm] mit

   [mm] n_1
Setzt man [mm] m:=n_1, [/mm] so ist

      [mm] \bigcup_{k=1}^{\infty}A_{n_k} \subseteq \bigcup_{k=m}^{\infty}A_k [/mm]

Also


   $w [mm] \in \bigcup_{k= m}^{\infty} A_k. [/mm] $

>  
>
> Dann kann man einfach die Monotonie von P ausnutzen und
> erhält:
>  
> [mm]P(A)\leq P(\bigcup_{k=m}^{\infty} A_k) \leq \sum_{k= m}^{\infty} P(A_k)[/mm]
> für alle m.
>  
> Im limes [mm]m\to \infty[/mm] strebt die Summe gegen 0, wenn
> [mm]\sum_{k= 1}^{\infty} P(A_k)<\infty.[/mm]
>  
> Also die Summe ist konvergent, da  [mm]\sum_{k\geq 1} P(A_k)<\infty[/mm]
> also geht die Folge der Partailsummen gegen 0. Das heißt
> für große m summiere ich nur noch 0en auf, sodass meine
> Wahrscheinlichkeit 0 ists oder verstehe ich das falsch?

Ja.

machen wirs so: Sei [mm] \summe_{k=1}^{\infty}a_k [/mm] eine konvergente Reihe mir nichtnegativen Gliedern [mm] a_k [/mm] und a [mm] \in [/mm] [0, [mm] \infty) [/mm] so, dass

  (*)  a [mm] \le \summe_{k=m}^{\infty}a_k [/mm]   für alle m [mm] \in \IN. [/mm]

Sei [mm] s_m:=\summe_{k=m}^{\infty}a_k. [/mm] Aus der Konvergenz der Reihe [mm] \summe_{k=1}^{\infty}a_k [/mm] folgt, dass die Folge [mm] (s_m) [/mm] eine Nullfolge ist.

Aus (*) folgt:

   0 [mm] \le [/mm] a [mm] \le s_m [/mm] für alle m.

Mit m [mm] \to \infty [/mm] haben wir: a=0.

FRED

>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]