matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisBoolesche Algebra: Maxterme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Boolesche Algebra: Maxterme
Boolesche Algebra: Maxterme < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Boolesche Algebra: Maxterme: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:10 Di 20.10.2015
Autor: sae0693

Aufgabe
Bestimmung und Vereinfachung des Maxterms. Die Aufgabe wurde aus Darstellungsgründen von mir gekürzt.

1) [mm] x_{1} [/mm] = 0, [mm] x_{2} [/mm] = 0, [mm] x_{3} [/mm] = 0, [mm] f(x_{1}x_{2}x_{3}) [/mm] = 0
2) [mm] x_{1} [/mm] = 0, [mm] x_{2} [/mm] = 1, [mm] x_{3} [/mm] = 0, [mm] f(x_{1}x_{2}x_{3}) [/mm] = 0
3) [mm] x_{1} [/mm] = 1, [mm] x_{2} [/mm] = 1, [mm] x_{3} [/mm] = 0, [mm] f(x_{1}x_{2}x_{3}) [/mm] = 0

Bestimme die Maxterme und vereinfache.




Wie mache ich das nun?

Ich dachte dabei an das Folgende:

Bei 1) komme ich auf [mm] x_{1}+x_{2}+x_{3} [/mm]
Bei 2) komme ich auf [mm] x_{1}*\overline{x_{2}}+x_{3} [/mm]
Bei 3) komme ich auf [mm] \overline{x_{1}}+\overline{x_{2}}+x_{3} [/mm]

Demnach ist [mm] f(x_{1}x_{2}x_{3}) [/mm] = [mm] (x_{1}+x_{2}+x_{3})(x_{1}+\overline{x_{2}}+x_{2})(\overline{x_{1}}+\overline{x2}+x_{3}) [/mm]

Daraufhin kann ich die [mm] x_{3} [/mm] ausklammern.

[mm] f(x_{1}x_{2}x_{3})=x_{3}(x_{1}x_{2})(x_{1}+\overline{x_{2}})(\overline{x_{1}}+\overline{x_{2}}) [/mm]

Und nun?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Boolesche Algebra: Maxterme: BItte keine Doppelposts
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:53 Di 20.10.2015
Autor: hippias

[willkommenvh]

Laut Forenregeln bitte Fragen nicht mehrfach stellen.

Zur eigentliche Frage kann ich nicht viel sagen. Du hast die Terme aufgestellt, dich haeufig verschrieben und dann vereinfacht. Mehr gibt die Aufgabenstellung nicht her.

Bezug
        
Bezug
Boolesche Algebra: Maxterme: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Do 22.10.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]