Boolesche Algebra < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:15 Fr 03.10.2008 | Autor: | drEvil |
Aufgabe | Der logische Term
[mm] (E_1\wedge{E_3})\vee(\overline{E}_1\wedge{E_2})\vee(E_2\wedge{E_3})\vee(E_1\wedge{E_2}\wedge{E_3})
[/mm]
kann deutlich vereinfacht werden. Wie lautet der vereinfachte logische Term?
|
Herauskommen soll [mm] (E_1\wedge{E_3})\vee(\overline{E}_1\wedge{E}_2) [/mm]
Leider habe ich absolut keine Ahnung, wie ich auf das Ergebnis kommen soll. Würde mich über Hilfe sehr freuen.
Gruß..
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:42 Fr 03.10.2008 | Autor: | drEvil |
Leider verstehe ich nicht ganz, wie ich diese Diagramme auf die Aufgabe anwenden kann. Hauptsächlich bei dem negierten Teil.
Vorallem ist es recht schwer von den Diagrammen wieder auf einen Term zu kommen.
|
|
|
|
|
> Leider verstehe ich nicht ganz, wie ich diese Diagramme auf
> die Aufgabe anwenden kann. Hauptsächlich bei dem negierten
> Teil.
> Vorallem ist es recht schwer von den Diagrammen wieder auf
> einen Term zu kommen.
Hallo drEvil,
Im vollständigen Johnston-Diagramm zu drei Ereignissen
(ich nenne sie lieber A,B,C statt [mm] E_1,E_2,E_3), [/mm] wo die logi-
schen den Mengenoperationen entsprechen, hat man
insgesamt 8 "elementare" Teilgebiete, die ich nummeriere:
1= A [mm] \cap [/mm] B [mm] \cap [/mm] C
2= A [mm] \cap [/mm] B [mm] \cap [/mm] C' (C'=Komplement von C= "nicht C")
3= A [mm] \cap [/mm] B' [mm] \cap [/mm] C
4= A [mm] \cap [/mm] B' [mm] \cap [/mm] C'
5= A' [mm] \cap [/mm] B [mm] \cap [/mm] C
6= A' [mm] \cap [/mm] B [mm] \cap [/mm] C'
7= A' [mm] \cap [/mm] B' [mm] \cap [/mm] C
8= A' [mm] \cap [/mm] B' [mm] \cap [/mm] C'
(mal' dir das auch auf !)
Dann ist:
A [mm] \cap [/mm] C = 1 [mm] \cup [/mm] 3
A' [mm] \cap [/mm] B = 5 [mm] \cup [/mm] 6
B [mm] \cap [/mm] C = 1 [mm] \cup [/mm] 5
A [mm] \cap [/mm] B [mm] \cap [/mm] C = 1
(entspricht den 4 Teiltermen aus der Aufgabe !)
Die Vereinigung dieser 4 Mengen ist L = 1 [mm] \cup [/mm] 3 [mm] \cup [/mm] 5 [mm] \cup [/mm] 6
Nun kann man versuchen, L einfacher darzustellen:
[mm] L=(1\cup 3)\cup(5 \cup [/mm] 6)= [mm] (A\cap C)\cup(B \cap [/mm] A')
Insgesamt ergibt sich die gesuchte Vereinfachung.
|
|
|
|