matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Bogenlänge einer Kurve im IR^2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Bogenlänge einer Kurve im IR^2
Bogenlänge einer Kurve im IR^2 < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bogenlänge einer Kurve im IR^2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 So 06.06.2010
Autor: ChopSuey

Aufgabe
Berechnen Sie die Bogenlänge folgender Kurven $\ f : I [mm] \to \IR^2 [/mm] $.

$\ f(t) := [mm] (t^3, \frac{3}{2}t^2) [/mm] $ für $\ I = [a,b] $ mit $\ 0 < a < b $

Hallo,

ich steck' bei dieser Aufgabe etwas fest und würde mich freuen, wenn mir jemand einen Tipp geben kann.

Es ist $\ f'(t) = [mm] (3t^2, [/mm] 3t) $ und $\ [mm] \| [/mm] f'(t) [mm] \| [/mm] = [mm] \| (3t^2, [/mm] 3t)  [mm] \| [/mm] = [mm] \wurzel{|3t^2|^2+|3t|^2} [/mm] = [mm] \wurzel{|9t^4|+|9t^2|} [/mm] = [mm] \wurzel{9t^4+9t^2} [/mm] = [mm] \wurzel{9t^2(t^2+1)} [/mm] = ...$

Alles weitere bringt mich irgendwie nicht weiter. Ich konnte bisher leider auch nicht passend substituieren.

Hat jemand einen Tipp?

Viele Grüße
ChopSuey

        
Bezug
Bogenlänge einer Kurve im IR^2: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 So 06.06.2010
Autor: steppenhahn

Hallo!

> Berechnen Sie die Bogenlänge folgender Kurven [mm]\ f : I \to \IR^2 [/mm].
>  
> [mm]\ f(t) := (t^3, \frac{3}{2}t^2)[/mm] für [mm]\ I = [a,b][/mm] mit [mm]\ 0 < a < b[/mm]
>  
> Hallo,
>  
> ich steck' bei dieser Aufgabe etwas fest und würde mich
> freuen, wenn mir jemand einen Tipp geben kann.
>  
> Es ist [mm]\ f'(t) = (3t^2, 3t)[/mm] und [mm]\ \| f'(t) \| = \| (3t^2, 3t) \| = \wurzel{|3t^2|^2+|3t|^2} = \wurzel{|9t^4|+|9t^2|} = \wurzel{9t^4+9t^2} = \wurzel{9t^2(t^2+1)} = ...[/mm]
>  
> Alles weitere bringt mich irgendwie nicht weiter. Ich
> konnte bisher leider auch nicht passend substituieren.
>
> Hat jemand einen Tipp?

Wenn ich das richtig sehe (wegen 0 < a < b), ist ja t > 0, also haben wir:

[mm] \integral{\sqrt{(3*t^{2})^{2} + (3*t)^{2}} dt} [/mm] = [mm] \integral{3*t*\sqrt{t^{2} +1} dt} [/mm] = [mm] \integral{\frac{3}{2}*(\sqrt{t^{2} +1})*(2t) dt}, [/mm]

und das hat die Form $f'(g(t))*g'(t)$ mit $g(t) = [mm] t^{2}+1$... [/mm]

Grüße,
Stefan

Bezug
                
Bezug
Bogenlänge einer Kurve im IR^2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 So 06.06.2010
Autor: ChopSuey

Moin Stefan,

> Hallo!
>  
> > Berechnen Sie die Bogenlänge folgender Kurven [mm]\ f : I \to \IR^2 [/mm].
>  
> >  

> > [mm]\ f(t) := (t^3, \frac{3}{2}t^2)[/mm] für [mm]\ I = [a,b][/mm] mit [mm]\ 0 < a < b[/mm]
>  
> >  

> > Hallo,
>  >  
> > ich steck' bei dieser Aufgabe etwas fest und würde mich
> > freuen, wenn mir jemand einen Tipp geben kann.
>  >  
> > Es ist [mm]\ f'(t) = (3t^2, 3t)[/mm] und [mm]\ \| f'(t) \| = \| (3t^2, 3t) \| = \wurzel{|3t^2|^2+|3t|^2} = \wurzel{|9t^4|+|9t^2|} = \wurzel{9t^4+9t^2} = \wurzel{9t^2(t^2+1)} = ...[/mm]
>  
> >  

> > Alles weitere bringt mich irgendwie nicht weiter. Ich
> > konnte bisher leider auch nicht passend substituieren.
> >
> > Hat jemand einen Tipp?
>  
> Wenn ich das richtig sehe (wegen 0 < a < b), ist ja t > 0,
> also haben wir:
>  
> [mm]\integral{\sqrt{(3*t^{2})^{2} + (3*t)^{2}} dt}[/mm] =
> [mm]\integral{3*t*\sqrt{t^{2} +1} dt}[/mm] =
> [mm]\integral{\frac{3}{2}*(\sqrt{t^{2} +1})*(2t) dt},[/mm]
>  
> und das hat die Form [mm]f'(g(t))*g'(t)[/mm] mit [mm]g(t) = t^{2}+1[/mm]...

Achso, ja. Ich hab sogar in dieser Richtung weitergemacht, dachte aber, ich müsste irgendwie unbedingt so substituieren, dass ich das $\ t $ durch etwas anderes ausdrücken kann.

Aber durch das Integral lässt sich der Parameter ja ohnehin ermitteln.

>  
> Grüße,
>  Stefan

Danke für Deine Hilfe!
Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]