matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBogenlänge Kardioide
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Bogenlänge Kardioide
Bogenlänge Kardioide < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bogenlänge Kardioide: Verwirrung
Status: (Frage) beantwortet Status 
Datum: 17:46 Fr 16.05.2008
Autor: devilsdoormat

Aufgabe
Man bestimmte die Bogenlänge der Kardioide mit der Parametrisierung [mm]\gamma : [0, 2\pi] \to \IR ^2 mit \gamma (t) := \begin{pmatrix} (1+cos(t))cos(t) \\ (1+cos(t))sin(t) \end{pmatrix}[/mm]

Hallo,

ich habe diese Frage in keinem anderen Forum gestellt.

Mein Endergebnis ist 0... da kann also irgendetwas nicht stimmen. Hier mal meine Zwischenergebnisse:

[mm] \dot \gamma (t) = \begin{pmatrix} -sin(t)cos(t)-(1+cos(t))sin(t) \\ -sin^2(t)+(1+cos(t))sin(t) \end{pmatrix} \left| \dot \gamma (t) \right| = \wurzel{2} \wurzel{1+cos(t)} \integral_{0}^{2\pi} \wurzel{2} \wurzel{1+cos(t)}\, dt = \wurzel{8} \left[ \wurzel{1-cos(t)} \right]_{0}^{2 \pi} [/mm]

nach dem Einsetzen der Grenzen kommt dann 0 raus... wo liegt jetzt mein Fehler?

Danke!

        
Bezug
Bogenlänge Kardioide: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Fr 16.05.2008
Autor: Leopold_Gast

Deine Stammfunktion ist nur für [mm]t \in [0,\pi][/mm] korrekt.



Ein paar Ergänzungen.

Dein Integrand ist unnötig kompliziert. Es gilt nämlich

[mm]\sqrt{2 \, ( 1 + \cos t )} = 2 \left| \cos \frac{t}{2} \right|[/mm]

Und so erzwingt die Berechnung des Integrals eine Fallunterscheidung für die Intervalle [mm][0,\pi][/mm] und [mm][\pi,2 \pi][/mm].

Alternativ kann man auch versuchen, eine auf ganz [mm][0 , 2 \pi][/mm] gültige Stammfunktion anzugeben. Das wäre etwa

[mm]F(t) = 4 \left( 1 - \sin \frac{t}{2} \right) \cdot \operatorname{sgn}( t - \pi ) \, , \ \ t \in [0, 2 \pi][/mm]

worin [mm]\operatorname{sgn}[/mm] die Signumfunktion bezeichne (die für positive Eingaben 1, für negative Eingaben -1 und für Null 0 zurückgibt).

Und noch einfacher geht es. Niemand zwingt einen, die Kurve über das Intervall [mm][0 , 2 \pi][/mm] zu parametrisieren. Man könnte ebensogut [mm][ - \pi , \pi ][/mm] nehmen. Dann ist man allen Ärger mit Fallunterscheidungen los, da [mm]\cos \frac{t}{2}[/mm] über diesem Intervall keine negativen Werte annimmt. Betragsstriche können also entfallen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]