matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikBode-Diagramm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Elektrotechnik" - Bode-Diagramm
Bode-Diagramm < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bode-Diagramm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 So 09.10.2011
Autor: zoj

Aufgabe
Die Übertragungsfunktion lautet:

[mm] H_{4}(j\omega)= \frac{1}{1+ \frac{j\omega}{\alpha}} [/mm]

Nun soll ich die Phase berechnen und anschließend diese zeichnen.

Komme nicht auf die richtige Lösung. An einer Stelle kann ich die Musterlösung nicht nachvollziehen.

Habe erstmal versucht die Aufgabe zu lösen.

Laut meinen Aufzeichnungen ist die Phase so definiert:
[mm] \phi(\omega) [/mm] = arctan [mm] \frac{Im{H(j \omega)}}{Re{H(j\omega)}} [/mm] für [mm] Re{H(j\omega) \ge 0} [/mm]

Nun zerlege ich meine Übertragungsfuktion in Realteil und Imaginärteil:
Übertragungsfunktion:
[mm] H_{4}(j\omega)= \frac{1}{1+ \frac{j\omega}{\alpha}} [/mm]
Re = 1
Im = [mm] \frac{1}{\frac{\omega}{\alpha}} [/mm]

Demnach folgt für die Phase:
[mm] \phi(\omega) [/mm] = arctan [mm] \frac{1}{\frac{\omega}{\alpha}} [/mm] = arctan [mm] \frac{\alpha}{\omega} [/mm]

Nun stimmt meine Lösung nicht mit der Musterlösung überein.
Wieso?

Hier die Musterlösung:
[mm] \phi(\omega)= (\frac{1}{1+j\frac{\omega}{\alpha}}) [/mm] = [mm] (\frac{1-j\frac{\omega}{\alpha}}{1+(\frac{\omega}{\alpha})^{2}}) [/mm] = [mm] arctan(-\frac{\omega}{\alpha}) [/mm] = [mm] -arctan(\frac{\omega}{\alpha}) [/mm]

So wie ich das sehe, macht man in der Musterlösung erstmal den Nenner reell, sodass die komplexe Zahl im Zähler steht. Wie man das macht habe ich verstanden. (Nenner mit der komplexkonjugierten multiplizieren)
Frage: Muss man das immer so machen?

Nun soll ich [mm] \phi [/mm] = [mm] -arctan(\frac{\omega}{\alpha}) [/mm] zeichnen.
Laut musterlösung liegt die Funktion komplett unter der [mm] \omega [/mm] Achse und hat einen Wendepunkt im Punkt [mm] (\alpha [/mm] / [mm] -\pi/4). [/mm]
Wie zeichnet man denn so eine Funktion?


        
Bezug
Bode-Diagramm: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 So 09.10.2011
Autor: fencheltee


> Die Übertragungsfunktion lautet:
>  
> [mm]H_{4}(j\omega)= \frac{1}{1+ \frac{j\omega}{\alpha}}[/mm]
>  
> Nun soll ich die Phase berechnen und anschließend diese
> zeichnen.
>  Komme nicht auf die richtige Lösung. An einer Stelle kann
> ich die Musterlösung nicht nachvollziehen.
>  
> Habe erstmal versucht die Aufgabe zu lösen.
>  
> Laut meinen Aufzeichnungen ist die Phase so definiert:
>  [mm]\phi(\omega)[/mm] = arctan [mm]\frac{Im{H(j \omega)}}{Re{H(j\omega)}}[/mm]
> für [mm]Re{H(j\omega) \ge 0}[/mm]
>  
> Nun zerlege ich meine Übertragungsfuktion in Realteil und
> Imaginärteil:

hallo,
du kannst erst nach dem "realmachen" des nenners in real- und imaginärteil aufsplitten. was du hier machst, ist käse

>  Übertragungsfunktion:
> [mm]H_{4}(j\omega)= \frac{1}{1+ \frac{j\omega}{\alpha}}[/mm]
>  Re =
> 1
>  Im = [mm]\frac{1}{\frac{\omega}{\alpha}}[/mm]
>  
> Demnach folgt für die Phase:
>  [mm]\phi(\omega)[/mm] = arctan [mm]\frac{1}{\frac{\omega}{\alpha}}[/mm] =
> arctan [mm]\frac{\alpha}{\omega}[/mm]
>  
> Nun stimmt meine Lösung nicht mit der Musterlösung
> überein.
>  Wieso?
>  
> Hier die Musterlösung:
>  [mm]\phi(\omega)= (\frac{1}{1+j\frac{\omega}{\alpha}})[/mm] =
> [mm](\frac{1-j\frac{\omega}{\alpha}}{1+(\frac{\omega}{\alpha})^{2}})[/mm]
> = [mm]arctan(-\frac{\omega}{\alpha})[/mm] =
> [mm]-arctan(\frac{\omega}{\alpha})[/mm]
>  
> So wie ich das sehe, macht man in der Musterlösung erstmal
> den Nenner reell, sodass die komplexe Zahl im Zähler
> steht. Wie man das macht habe ich verstanden. (Nenner mit
> der komplexkonjugierten multiplizieren)
>  Frage: Muss man das immer so machen?

jo

>  
> Nun soll ich [mm]\phi[/mm] = [mm]-arctan(\frac{\omega}{\alpha})[/mm]
> zeichnen.
>  Laut musterlösung liegt die Funktion komplett unter der
> [mm]\omega[/mm] Achse und hat einen Wendepunkt im Punkt [mm](\alpha[/mm] /
> [mm]-\pi/4).[/mm]
>  Wie zeichnet man denn so eine Funktion?

naja, für omega setzt man die werte 0, [mm] \infty [/mm] und [mm] \alpha [/mm] ein, daraus ist dann ein asymptotischer phasengang skizzierbar

>  


gruß tee

Bezug
        
Bezug
Bode-Diagramm: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Mo 10.10.2011
Autor: scherzkrapferl


> Laut meinen Aufzeichnungen ist die Phase so definiert:
>  [mm]\phi(\omega)[/mm] = arctan [mm]\frac{Im{H(j \omega)}}{Re{H(j\omega)}}[/mm]
> für [mm]Re{H(j\omega) \ge 0}[/mm]
>  
> Nun zerlege ich meine Übertragungsfuktion in Realteil und
> Imaginärteil:
>  Übertragungsfunktion:
> [mm]H_{4}(j\omega)= \frac{1}{1+ \frac{j\omega}{\alpha}}[/mm]

schau mal in dein skript ;) du musst hier erweitern damit du real und imaginärteil angeben kannst

>  Re =
> 1
>  Im = [mm]\frac{1}{\frac{\omega}{\alpha}}[/mm]
>  

LG Scherzkrapferl


Bezug
        
Bezug
Bode-Diagramm: Noch ein Weg
Status: (Antwort) fertig Status 
Datum: 19:51 Mo 10.10.2011
Autor: Infinit

Hallo zoj,
mit dem Reellmachen des Nenners bist Du auf der sicheren Seite der Rechnung, es geht aber auch direkter, wenn Du Dir überlegst, dass der Zähler eines Bruchs die Phase vergrößert, der Nenner dagegen verkleinert.
Für einen komplexen Ausdruck
[mm] \bruch{a + jb}{c+jd} [/mm] bekommst Du dann für den Phasenausdruck
[mm] \varphi = \arctan(\bruch{b}{a}) - \arctan (\bruch{d}{c}) [/mm]
So kommst Du in einer Zeile zu Deinem Ergebnis:
[mm] \varphi = \arctan(\bruch{0}{1}) - \arctan (\bruch{\bruch{\omega}{\alpha}}{1}) [/mm]
Der erste Term liefert den Wert 0 und es bleibt übrig
[mm] \varphi = - \arctan(\bruch{\omega}{\alpha}) [/mm]
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]