matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBlockmatrix Induktion zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Blockmatrix Induktion zeigen
Blockmatrix Induktion zeigen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Blockmatrix Induktion zeigen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:25 Sa 11.01.2014
Autor: easysurfer

Aufgabe
Es seien [mm]A \in \IK^{n\;\times\;n}, B \in \IK^{n\;\times\;m}[/mm] und [mm]C \in \IK^{m\;\times\;m}[/mm] Matrizen. Ferner sei M die Blockmatrix
[mm]M := \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}[/mm]
Zeigen sie mit Hilfe des Entwicklungssatzes, dass det(M) = det(A) * det(C)

Hallo zusammen,

Mein Ansatz ist, per vollständiger Induktion die o.g. Aussage zu beweisen. Doch da beginnen schon die Probleme, denn ich habe ja 2 Variablen (m und n) die ich durchlaufen sollte.

Induktionsanfang:
n = 1, m = 1
[mm]\vmat{ a & b \\ 0 & c } = a_{1\times1} * c_{1\times1} - b_{1\times1} * 0 = det(A) * det(C)[/mm]

n = 2, m = 1 (Entwickeln nach letzter Zeile)
[mm]\vmat{ a & a &b \\ a & a & b \\ 0 & 0 & c } = C_{1\times1} * det(A)[/mm]
Diese Matrix bezeichne ich ab jetzt als [mm]A\*[/mm]

n = 2, m = 2 (Entwickeln nach letzer Zeile)
[mm]\vmat{ a & a & b & b \\ a & a & b & b \\ 0 & 0 & c & c \\ 0 & 0 & c & c} = (-1)c_{4\times3}*det(A\*) + 1*c_{4\times4}*(A\*)[/mm]

( Die Matrix n = 1, m = 2 habe ich weggelassen, aber geht analog )

Es ist ersichtlich, dass das Entwickeln der Matrix (n = 2, m = 2) automatisch auf zwei mal Entwickeln der Matrix (n = 2, m = 1) entspricht. Nur wir stell ich das Mathematisch korrekt und in einem Induktionsbeweis dar?

Bei Matrizen mit beliebigen Werten war mein Ansatz dann:
Entwickeln nach jeweils der letzen Zeile, dann kommt man auf:
[mm](-1)^{j + k}*c_{x \times y} * det( \tilde A_{j\times k})[/mm] wobei [mm]\tilde A_{j\times k[/mm] irgendwann dem Induktionsanfang entsprechen muss, rein logisch. Nur Mathematisch ist das nicht gezeigt, oder?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Greez Easy

        
Bezug
Blockmatrix Induktion zeigen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 13.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]