matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikBlack scholes modell
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Finanzmathematik" - Black scholes modell
Black scholes modell < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Black scholes modell: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 20:17 Sa 04.12.2010
Autor: daisy23

Aufgabe
Die Zufallsvariablen [mm] X_{1} [/mm] und [mm] X_{2} [/mm] seien gemeinsam normalverteilt und der Zufallsvektor besitzt die Dichte
[mm] f(x)=\bruch{1}{2\pi\wurzel{1-p^{2}}}exp(-\bruch{1}{2(1-p^{2})}(x_{1}^{2}+x_{2}^{2}-2px_{1}x_{2})) [/mm] , [mm] x=(x_{1},x_{2})^^{T}\in \IR^{2} [/mm] mit [mm] E_{P}[X_{i}]=0, Var_{P}[X_{i}]=1, [/mm] i=1,2 und [mm] Cov_{P}[X_{1},X_{2}]=p\in(-1,1). [/mm]
Berechnen Sie die bedingte Erwartung [mm] E_{P}[S_{2}^{1}|S_{1}^{1}] [/mm] für einen preisprozess der Form
[mm] S_{t}^{1}:=S_{0}^{1}exp(\summe_{k=1}^{t}(\delta_{k}X_{k}+\mu_{k})), [/mm] t=0,1,2, mit Konstanten [mm] S_{0}^{1}>0, \delta_{k}>0 [/mm] und [mm] \mu_{k}\in\IR, [/mm] k=1,2.

Hallo,

Ich versuche seit Stunden diese Aufgabe zu lösen, ich weiß dass

[mm] E[X_{2}|X_{1}] =\integral_{\IR} x_{1}{f_{X_{2}|X_{1}}(x_{1},x_{2}) dx_{1}}=pX_{1} [/mm] ist, wobei [mm] f_{X_{2}|X_{1}}(x_{1},x_{2})=\bruch{1}{\wurzel{2\pi}\wurzel{1-p^{2}}}exp(-\bruch{1}{2(1-p^{2})}(x_{2}-px_{1})^2). [/mm] Nun komme ich nicht weiter, könnt ihr mir bitte helfen...

        
Bezug
Black scholes modell: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Sa 04.12.2010
Autor: Blech

Hi,

es ist nicht so ganz klar, was [mm] $X_0$, $\delta_0$ [/mm] und [mm] $\mu_0$ [/mm] sein sollen, ich nehm mal an [mm] $X_0=0$, $\mu_0=0$ [/mm]

[mm] $S_2=S_1*e^{\mu_2}e^{\delta_2X_2}$ [/mm]

Also ist [mm] $E(S_2|S_1)=S_1*e^{\mu_2}*E(e^{\delta_2 X_2}|S_1)$ [/mm]

Desweiteren

[mm] $S_1=S_0+S_0e^{\mu_1}e^{\delta_1 X_1}$ [/mm]


d.h. Du brauchst

[mm] $E\left(e^{\delta_2 X_2}\ |\ e^{\delta_1X_1}\right)$ [/mm]

und dafür brauchst Du die gemeinsame Verteilung von [mm] $(e^{\delta_2 X_2},e^{\delta_1X_1})$ [/mm]

[mm] $(\delta_1 X_1, \delta_2 X_2)$ [/mm] ist 2-dim normalverteilt, davon komponentenweise die Exponentialfunktion genommen ergibt eine 2-dim Lognormalverteilung. Wenn Du mal auf die deutsche Wikipedia schaust, dann haben die was zu der im Artikel zur Lognormalverteilung.

ciao
Stefan



Bezug
                
Bezug
Black scholes modell: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:41 Sa 04.12.2010
Autor: daisy23

Danke nochmal für die Hilfe:)

Mir ist nur nicht verständlich, warum [mm] S_{1}=S_{0}+S_{0}exp(\delta_{1}X_{1}+\mu_{1}) [/mm] anstatt [mm] S_{1}=S_{0}exp(\delta_{1}X_{1}+\mu_{1}) [/mm]

Bezug
                        
Bezug
Black scholes modell: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Sa 04.12.2010
Autor: Blech

Hi,

weil ich ein Trottel bin und nicht geschaut habe, bei welchem Index die Summe anfängt, nur daß sie bis t geht und t=0,1,2 sein kann.

Zu meiner Verteidigung, normalerweise sind die Summationsindizes in Fragen hier nur eine unverbindliche Preisempfehlung. =)

Du hast absolut recht. Der Summand für k=0 existiert nicht.

ciao
Stefan

Bezug
        
Bezug
Black scholes modell: Idee
Status: (Frage) beantwortet Status 
Datum: 14:51 So 05.12.2010
Autor: daisy23

Nun habe ich:
[mm] E[X_{2}|X_{1}]=\integral_{\IR}{x_{1} exp(-\bruch{1}{2(1-p^{2})}(\bruch{ln(x_{2})}{\delta_{2}}-\bruch{ln(x_{1})}{\delta_{1}}p)^2)dx_{1}}= \bruch{ln(x_{1})}{\delta_{1}}p [/mm]

Also insgesamt:

[mm] E[S_{2}|S_{1}]=S_{1}exp(\mu_{2})\bruch{ln(x_{1})}{\delta_{1}}p [/mm]

Nun würde ich wissen, ob das so korrekt ist.

liebe grüße...


Bezug
                
Bezug
Black scholes modell: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 So 05.12.2010
Autor: Blech

Hi,

wieso setzt Du für $ [mm] E\left(e^{\delta_2 X_2}\ |\ e^{\delta_1X_1}\right) [/mm] $ einfach [mm] $E(X_2|X_1)$ [/mm] ein?!

ciao
Stefan

Bezug
                        
Bezug
Black scholes modell: Idee
Status: (Frage) überfällig Status 
Datum: 16:22 So 05.12.2010
Autor: daisy23

Na ja ich dachte, da
[mm] (X_{1},X_{2}) [/mm] gemeinsam Normalverteilt und [mm] (e^{\delta_{1}X_{1}},e^{\delta_{2}X_{2}}) [/mm] gemeinsam Lognormalverteilt sind, gilt somit für [mm] X_{1}=\bruch{ln(x_{1})}{\delta_{1}} [/mm] und [mm] X_{2}=\bruch{ln(x_{2})}{\delta_{2}} [/mm]

liebe grüße...

Bezug
                                
Bezug
Black scholes modell: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 07.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]