matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBivariate Gleichverteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Bivariate Gleichverteilung
Bivariate Gleichverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bivariate Gleichverteilung: Erklärung
Status: (Frage) beantwortet Status 
Datum: 14:17 Do 18.04.2013
Autor: DominikF

Aufgabe
Übung: Bivariate Gleichverteilung
X und Y bivariat gleichverteilt auf [−1,1] × [−1,1]
• Berechne die Wahrscheinlichkeit, dass max{|X|,|Y |} < 1/2.
• Berechne die Wahrscheinlichkeit, dass
[mm] X^2+ Y^2< [/mm] 1.
Hinweis: Im Falle der bivariaten Gleichverteilung ist eine formale
Integration nicht wirklich notwendig. Berechnung von
Wahrscheinlichkeiten ergibt sich unmittelbar durch Vergleich von
Flächen.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe leider keine Vorlesung zu diesem Thema (hab im Sommersemster angefangen) und ich verstehe einfach nicht was ich machen soll. Außerdem ist mein Wissen über Integralrechnung überaus beschränkt.

Ich würde mich freuen wenn mir jemand erklären könnte wie man diese Aufgaben angeht.

Mir ist auch noch ein Beispiel mitgegeben worden:
Beispiel: Bivariate Gleichverteilung
X und Y bivariat gleichverteilt auf [0,1] × [0,1] ⇒ Dichte
f(x, y) = 1, 0 ≤ x, y ≤ 1.

Gemeinsame Verteilungsfunktion
F(a, b) = ∫b y=0 ∫a x=0 f(x, y) dxdy = a b, 0 ≤ a, b ≤ 1.

Dichte der Randverteilung:
fX(x) = ∫∞ y=−∞ f(x, y) dy = 1, 0 ≤ x ≤ 1
gibt Dichte der univariaten Gleichverteilung

Liebe Grüße
Dominik


        
Bezug
Bivariate Gleichverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Do 18.04.2013
Autor: luis52

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Moin Dominik,

[willkommenmr]

Die Dichte kannst du dir als obere Flaeche eines Blocks der Hoehe 1/4 oberhalb der Menge $\mathcal{M}=[-1,1] \times [-1,1] $ vorstellen.

Bei der ersten Teilaufgabe musst du die Teilmenge $\mathcal{M}_1=\{(x,y)\mid \max\{|x|,|y|\} < 1/2\}$ in $\mathcal{M}$  bestimmen. Eine Skizze koennte hilfreich sein. Die gesuchte Wsk ist $\text{Flaeche}(\mathcal{M}_1})/4$ (Grundflaeche $\times$ Hoehe).

Die zweite Teilaufgabe verlaeuft analog, $\mathcal{M}_2$ ist hier m.E. ein Kreis.

vg Luis







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]