matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenBiquadratische Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ganzrationale Funktionen" - Biquadratische Gleichungen
Biquadratische Gleichungen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Biquadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Di 14.08.2012
Autor: hase-hh

Aufgabe
Was ist eine biquadratische Funktion?

Moin Moin!

Vor ein paar Tagen habe ich gelesen, dass ein Polynom 4. Grades immer eine biquadratische Funktion ist.

Bisher habe ich biquadratische Gleichungen als Polynome 4. Grades kennengelernt, die man durch Substitution von [mm] x^2 [/mm] = z  in eine quadratische Gleichung umformen kann.

Sind also andere Polynome 4. Grades keine biquadratischen Funktionen?
Meine Idee, ein Polynom 4. Grades hat ja (bis zu) vier Nullstellen.

Ich könnte es also zerlegen in f(x) = [mm] a*(x-n_1)*(x-n_2)*(x-n_3)*(x-n_4) [/mm]

bzw. f(x)= [mm] a*(x^2-(n_1+n_2)*x+ n_1*n_2)*(x^2-(n_3+n_4)*x+ n_3*n_4) [/mm]

Dann hätte ich zwei Faktoren = zwei quadratisceh Funktionen, die mit einander multipliziert mglw. eine biquadratische Funktion ergeben???


Also nochmal die Frage:   Was ist eine biquadratisceh Funktion?  bzw. Sind alle Polynome 4. Grades biquadratiswche Funtionen?


Danke & Gruß

















        
Bezug
Biquadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Di 14.08.2012
Autor: reverend

Hallo hase-hh,

alle Polynome 4. Grades sind biquadratische Funktionen. Die Bezeichnung bedeutet nichts anderes.

Im übrigen sind aber alle Polynome 4. Grades zerlegbar, nämlich mindestens in zwei Polynome 2. Grades (also quadratische Funktionen), sogar dann, wenn sie keine einzige Nullstelle haben.

Beispiele:
[mm] x^4-x^3-x^2+6=(x^2+2x+2)(x^2-3x+3) [/mm]
[mm] x^4+4=(x^2+2x+2)(x^2-2x+2) [/mm]
[mm] x^4+2x^2+x+2=(x^2+x+1)(x^2-x+2) [/mm]

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]