matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Biquadratische Gleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Biquadratische Gleichungen
Biquadratische Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Biquadratische Gleichungen: Frage
Status: (Frage) beantwortet Status 
Datum: 15:57 Sa 19.03.2005
Autor: Lisa14

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich bin in Mathe leider nicht sehr gut und benötige unbedingt Hilfe bei den biquadratischen Gleichungen.

Hier sind drei Punkte, könnte mir bitte jemand an diesem Beispiel erklären, wie ich zur Lösung komme?!

A (2/4)
B (-1/3)
C (4/0)

Ich würde mich sehr über schnelle Hilfe freuen...

Lisa



        
Bezug
Biquadratische Gleichungen: Lösung
Status: (Antwort) fertig Status 
Datum: 16:52 Sa 19.03.2005
Autor: miniscout

Hallo Lisa!

Welche Aufgabenstellung gehört denn zu den Punkten? Ich hab's mal ausprobiert, als dass sie alle auf der Funktion f(X)=ax²+bx+c liegen:

gegeben: y=ax²+bx+c
A (2/4)
B (-1/3)
C (4/0)

I:   4=4a+2b+c
II:  3=a-b+c
III: 0=16a+4a+c

I-II:  1=3a+3b
I-III: 4=-12a-2b

IV:  2=6a+6b
V:   12=-36a-6b

IV+V: 14=30a

:-)  [mm] $a=\bruch{7}{15}$ [/mm]

1=3a+3b

[mm] $1=\bruch{7}{5}+3b$ [/mm]

:-)  [mm] $b=-\bruch{2}{15}$ [/mm]

3=a-b+c

[mm] $3=\bruch{7}{15}+\bruch{2}{15}+c$ [/mm]

:-) [mm] $c=\bruch{12}{5}$ [/mm]

;-) [mm] $y=\bruch{7}{15}x^{2}-\bruch{2}{15}x+\bruch{12}{5}$ [/mm]


Ich hoffe, ich hab keine Fehler reingebracht. Rechne es bitte noch mal durch, okay?
Wenn noch Fragen offen sind, dann melde dich.

Schöne Grüße,
miniscout [clown]



Bezug
                
Bezug
Biquadratische Gleichungen: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:09 Sa 19.03.2005
Autor: Lisa14

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo miniscout,

mein Mathelehrer verlangt leider, dass wir das in Matrix-Form machen. Kannst du mir das Ganze mit der Matrix-Form (biquadratische Gleichungen) erklären??

Wäre echt lieb von dir!!

Lisa

Bezug
                        
Bezug
Biquadratische Gleichungen: Matrix?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Sa 19.03.2005
Autor: miniscout

Hallo Lisa!

Sorry, ich hab bis jetzt weder mit Matrix gearbeitet, noch weiß ich, was das überhaupt ist [verlegen].

Ciao miniscout [clown]



Bezug
                        
Bezug
Biquadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Sa 19.03.2005
Autor: Zwerglein

Hi, Lisa,

ich versuch' mal die Aufgabe so zu lösen, dass Dein Lehrer damit zufrieden
[mm] \pmat{4 & 2 & 1 & | 4 \\ 1 & -1 & 1 & | 3 \\ 16 & 4 & 1 & | 0} [/mm]

Multiplikation der 2. Zeile mit 4, Subtraktion von der 1.Zeile;
Multiplikation der 1. Zeile mit 4, Subtraktion von der 3. Zeile:
[mm] \pmat{4 & 2 & 1 & | 4 \\ 0 & 6 & -3 & | -8 \\ 0 & -4 & -3 & | -16} [/mm]

Letzte Zeile mal 1,5, Addition zur vorletzten:
[mm] \pmat{4 & 2 & 1 & | 4 \\ 0 & 6 & -3 & | -8 \\ 0 & 0 & -7,5 & | -32} [/mm]

Auflösen der letzten Zeile: c= [mm] \bruch{64}{15} [/mm]
vorletzte Zeile b= [mm] \bruch{4}{5} [/mm]
erste Zeile: a= [mm] -\bruch{7}{15} [/mm]
(Ohne Garantie für Rechenfehler!)




Bezug
                                
Bezug
Biquadratische Gleichungen: BI-Quadratisch!!!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:26 Sa 19.03.2005
Autor: Teletubyyy

hallo,

Kann sein, dass ich mich irre, aber die Frage doch nach einer Biquadratischen Gleichung, also eine der Form [mm] $ax^4+bx^2+c$ [/mm] und nicht etwa [mm] $ax^2+bx+c$ [/mm]

Ich komme dann nähmlich auf:

$ [mm] \pmat{16 & 4 & 1 & | 4 \\ 1 & 1 & 1 & | 3 \\ 256 & 16 & 1 & | 0} [/mm] $

Gruß Samuel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]