matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikBiot Savart
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - Biot Savart
Biot Savart < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Biot Savart: Vektoren korrekt?
Status: (Frage) beantwortet Status 
Datum: 11:55 Do 15.07.2010
Autor: FrankZane

Aufgabe
Gegeben ist die rechts abgebildete Anordnung mit dem Winkel
α in der x-y-Ebene. Auf dem dargestellten Leiterst¨uck der L¨ange
2L fließt der Strom I.
a)  Berechnen Sie mit dem Biot-Savart-Gesetz den Beitrag dieses
Leiterst¨ucks zur magnetischen Flussdichte
~
B P im Punkt P =
(0, 0, z 0 ) auf der hier nicht dargestellten z-Achse, mit z 0 > 0.

http://www.bilder-hochladen.net/files/eom3-7-jpg-nb.html

Hallo, ich bin gerade dabei eine Aufgabe zu Biot Savart zu rechnen allerdings bin ich mir unsicher, ob meine Vektoren richtig sind?

für dl' habe ich: [mm] [cos(\alpha)*dlx; sin(\alpha)*dly;0] [/mm]
für r(z0) habe ich: (0,0,z0)
und r' = dl'

Kann mir jemand sagen, ob das soweit richtig ist, damit ich das mal durchrechnen kann?

Grüße

        
Bezug
Biot Savart: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Fr 16.07.2010
Autor: leduart

Hallo
was soll denn dlx sein? mit einfach dl ists richtitig
gruss leduart

Bezug
                
Bezug
Biot Savart: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:31 Fr 16.07.2010
Autor: FrankZane

Hallo,
das "x" sollte eigentlich nur ein Indize darstellen, aber ich wusste nicht ob/wie man das hier tiefstellen kann.
Nagut, dann werde ich das erstmal durchrechnen.

Bezug
                        
Bezug
Biot Savart: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Fr 16.07.2010
Autor: FrankZane

Kann mir bis hierher mal jemand sagen, ob das richtig ausschaut, das wäre ganz nice ;)

[mm] B(z_o) [/mm] = [mm] \mu0*I/4\pi *\integral [/mm] dl X [mm] (r[z_0]-r') [/mm] / [mm] |r[z_0]-r'^3| [/mm]

r(zo)-r' = [mm] \vektor{0 \\ 0\\z_0} [/mm] - [mm] \vektor{cos(\alpha)dl \\ \sin(\alpha)dl\\0} [/mm] = [mm] \vektor{-cos(\alpha)dl \\ -sin(\alpha)dl\\z_0} [/mm]

dl X  [mm] (r(z_0)-r') [/mm] = [mm] \vektor{cos(\alpha)dl \\ \sin(\alpha)dl\\0} [/mm] X [mm] \vektor{-cos(\alpha)dl \\ -sin(\alpha)dl\\z_0} [/mm] = [mm] \vektor{z_0sin(\alpha)dl-0 \\ 0 - z_0 * cos(\alpha)dl\\cos(\alpha)dl*(-sin(\alpha)dl-sin(\alpha)dl) *(-cos(\alpha)dl)} [/mm] = [mm] \vektor{z_0sin(\alpha)dl \\ - z_0 * cos(\alpha)dl\\0} [/mm]

-> [mm] B(z_o) [/mm] = [mm] \mu0*I/4\pi [/mm] * [mm] \vektor{z_0sin(\alpha)dl \\ - z_0 * cos(\alpha)dl\\0} \integral_{L1}^{L2} [/mm] * dl [mm] /\wurzel{cos^2(\alpha) dl^2 + sin^2(\alpha)dl^2 +z_0^2} [/mm]


Bezug
                                
Bezug
Biot Savart: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Sa 17.07.2010
Autor: leduart

Hallo
Ich komm mit dem , was du da machst nicht zurecht.
da steht dl im Nenner? was hat dl in r' zu suchen?
schreib vielleicht erstmal auf, was rauskommt, wenn L in x- Richtung, oder y- Richtung fliesst, wenn es dann unter [mm] \alpha [/mm] fliesst, ndert sich doch nur der Winkel von B eben auch um [mm] \alpha. [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]