matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBinomischer Lehrsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Binomischer Lehrsatz
Binomischer Lehrsatz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomischer Lehrsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Di 08.04.2008
Autor: vju

Aufgabe
[mm] \summe_{k=1}^{n} \vektor{n \\ k} (-1)^k [/mm] k = 0;

Kann mir jemand erklären wie man auf dieses Ergebnis kommen kann?
Ich habe mir überlegt, wenn ich n = 1 einsetze, dann ist es doch:

[mm] \summe_{k=1}^{1} \vektor{1 \\ 1} (-1)^1*1 [/mm] = -1.

Also kann es doch gar nicht stimmen?

Ich glaube ich stehe grade total auf dem schlauch...

Diese Frage habe ich in keinem anderem Forum gestellt.

        
Bezug
Binomischer Lehrsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Di 08.04.2008
Autor: abakus


> [mm]\summe_{k=1}^{n} \vektor{n \\ k} (-1)^k[/mm] k = 0;
>  Kann mir jemand erklären wie man auf dieses Ergebnis
> kommen kann?
> Ich habe mir überlegt, wenn ich n = 1 einsetze, dann ist es
> doch:
>  
> [mm]\summe_{k=1}^{1} \vektor{1 \\ 1} (-1)^1*1[/mm] = -1.
>  
> Also kann es doch gar nicht stimmen?

Die Formel ist auch falsch, es geht mit k=0 los (nicht mit k=1).
Viele Grüße
Abakus


>  
> Ich glaube ich stehe grade total auf dem schlauch...
>  
> Diese Frage habe ich in keinem anderem Forum gestellt.


Bezug
                
Bezug
Binomischer Lehrsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Di 08.04.2008
Autor: vju

Hallo,

Vielen Dank für die schnelle Antwort :-)

Also bei mir auf dem Übungszettel steht das aber so da, wie ich es abgetippt habe. Bis du dir sicher, dass sich der prof. vertippt hat?

Grüße Vju

Bezug
                        
Bezug
Binomischer Lehrsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Di 08.04.2008
Autor: abakus


> Hallo,
>  
> Vielen Dank für die schnelle Antwort :-)
>  
> Also bei mir auf dem Übungszettel steht das aber so da, wie
> ich es abgetippt habe. Bis du dir sicher, dass sich der
> prof. vertippt hat?
>  
> Grüße Vju

Ach so, und der Faktor k hat in der Formel eigentlich auch nichts zu suchen. Es geht meiner Meinung nach um die Aussage, dass [mm] \vektor{n \\ 0}-\vektor{n \\ 1}+\vektor{n \\ 2}- ...\pm\vektor{n\\ n} [/mm] immer Null ist


Bezug
                                
Bezug
Binomischer Lehrsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Di 08.04.2008
Autor: vju

Ok, vielen Dank. Das würde auch direkt Sinn machen.

Ich werde da vorsichtshalber morgen nochmal Fragen, fürs erste hat es mir aber sehr geholfen ^__^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]