matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBinomische Reihe-Taylorpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Binomische Reihe-Taylorpolynom
Binomische Reihe-Taylorpolynom < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomische Reihe-Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Sa 06.05.2006
Autor: Fei

Aufgabe
Die Taylorreihe der Funktino f(x) = [mm] (1+x)^\alpha, \alpha [/mm] aus  [mm] \IR [/mm] ist
g(x) = T[f,0](x) =  [mm] \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} x^n [/mm]
und hat einen Konvergenzradius R>=1

Zeigen Sie, dass f(x) = g(x) für |x|<1 gilt.

Zeigen Sie zunächst, dass  [mm] \bruch{g'(x)}{g(x)} [/mm] =  [mm] \bruch{\alpha}{1+x} [/mm] und integrieren Sie dann die Gleichung.

Hallo Leute,

Ich bräuchte Hilfe bei dieser Frage, bitte über diesen Weg.
Wenn die oben gegebene Gleichung gilt, dann braucht man ja nur noch zu integrieren und man hat die Lösung. Aber wie kommt man überhaupt auf die Gleichung? Ich habe folgendes ausprobiert:

[mm] \bruch{g'(x)}{g(x)} [/mm] =  [mm] \bruch{\alpha}{1+x} [/mm]
[mm] \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1} [/mm] (1+x) = [mm] \alpha \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} x^n [/mm]
[mm] \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1} [/mm]  + [mm] \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^n [/mm] = [mm] \summe_{n=0}^{\infty} \alpha \vektor{ \alpha \\ n} x^n [/mm]
[mm] \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1} [/mm] = [mm] \summe_{n=0}^{\infty} (\alpha-n) \vektor{ \alpha \\ n} x^n [/mm]

Nun bin ich am Ende meiner Weißheit, das kann doch nicht richtig sein, da fehlt doch ein x?!?!

Freue mich auf jede Hilfe, danke
Fei

        
Bezug
Binomische Reihe-Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Sa 06.05.2006
Autor: felixf

Hi Fei!

> Die Taylorreihe der Funktino f(x) = [mm](1+x)^\alpha, \alpha[/mm]
> aus  [mm]\IR[/mm] ist
>  g(x) = T[f,0](x) =  [mm]\summe_{n=0}^{\infty} \vektor{ \alpha \\ n} x^n[/mm]
>  
> und hat einen Konvergenzradius R>=1
>  
> Zeigen Sie, dass f(x) = g(x) für |x|<1 gilt.
>  
> Zeigen Sie zunächst, dass  [mm]\bruch{g'(x)}{g(x)}[/mm] =  
> [mm]\bruch{\alpha}{1+x}[/mm] und integrieren Sie dann die
> Gleichung.
>  Hallo Leute,
>  
> Ich bräuchte Hilfe bei dieser Frage, bitte über diesen
> Weg.
>  Wenn die oben gegebene Gleichung gilt, dann braucht man ja
> nur noch zu integrieren und man hat die Lösung. Aber wie
> kommt man überhaupt auf die Gleichung? Ich habe folgendes
> ausprobiert:
>  
> [mm]\bruch{g'(x)}{g(x)}[/mm] =  [mm]\bruch{\alpha}{1+x}[/mm]
>   [mm]\summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1}[/mm]
> (1+x) = [mm]\alpha \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} x^n[/mm]
>  
>  [mm]\summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1}[/mm]  +
> [mm]\summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^n[/mm] =
> [mm]\summe_{n=0}^{\infty} \alpha \vektor{ \alpha \\ n} x^n[/mm]
>  
> [mm]\summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1}[/mm] =
> [mm]\summe_{n=0}^{\infty} (\alpha-n) \vektor{ \alpha \\ n} x^n[/mm]

Da fehlen ganz viele Aequivalenzzeichen!

Mach doch mal ne Indexverschiebung auf der linken Seite: [mm] $\sum_{n=0}^\infty \binom{\alpha}{n} [/mm] n [mm] x^{n-1} [/mm] = [mm] \sum_{n=1}^\infty \binom{\alpha}{n} [/mm] n [mm] x^{n-1} [/mm] = [mm] \sum_{m=0}^\infty \binom{\alpha}{m + 1} [/mm] (m + 1) [mm] x^m$, [/mm] wobei $m = n - 1$ ist.

So. Jetzt hast du also [mm] $\sum_{n=0}^\infty \binom{\alpha}{n + 1} [/mm] (n + 1) [mm] x^n [/mm] = [mm] \sum_{n=0}^\infty \binom{\alpha}{n} (\alpha [/mm] - n) [mm] x^n$. [/mm] Nach dem Identitaetssatz fuer Potenzreihen ist das aequivalent zu [mm] $\binom{\alpha}{n + 1} [/mm] (n + 1) = [mm] \binom{\alpha}{n} (\alpha [/mm] - n)$ fuer alle $n [mm] \ge [/mm] 0$. Jetzt setz doch mal die Definition von [mm] $\binom{\alpha}{n}$ [/mm] ein und pruefe das nach!

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]