matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikBinominalkoeffizienten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Kombinatorik" - Binominalkoeffizienten
Binominalkoeffizienten < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binominalkoeffizienten: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:31 Sa 11.07.2009
Autor: kanuddel

Aufgabe
Hallo, hänge gerade bei der Klausurvorbereitung:

26 Buchstaben, 5 davon Vokale.
Wieviele sinnvolle und unsinnige Wörter kann man bilden, wenn:

Das 6-stellige Wort hat mindestens 2 gleiche Buchstaben: [mm] 26^6-26*25*24*23*22*21=143150176 [/mm]
soweit so gut, das stimmt auch, da bin ich sicher.

Aber wie schaut es hier aus?
Das 7-stellige Wort hat mindestens 2 gleiche Buchstaben:

Das 7-stellige Wort hat mindestens 3 gleiche Buchstaben:

Das 7-stellige Wort hat mindestens 2 gleiche Buchstaben und genau 1 Vokal:

Das 7-stellige Wort hat mindestens 2 gleiche Buchstaben und genau 2 Vokale:

Denkansätze gibts ja viele, aber wie genau das nun geht, weiss ich nicht. und rausfinden ob meine Ansätze (sind ja eigtl klar wie die lauten) richtig sind, kann ich ja auch nicht so einfach :(
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binominalkoeffizienten: Rechenweg?
Status: (Antwort) fertig Status 
Datum: 16:44 Sa 11.07.2009
Autor: informix

Hallo kanuddel und [willkommenmr],

> Hallo, hänge gerade bei der Klausurvorbereitung:
>  
> 26 Buchstaben, 5 davon Vokale.
>  Wieviele sinnvolle und unsinnige Wörter kann man bilden,
> wenn:
>  
> Das 6-stellige Wort hat mindestens 2 gleiche Buchstaben:
> 266-26⋅25⋅24⋅23⋅22⋅21=143150176
>  soweit so gut, das stimmt auch, da bin ich sicher.

Woher rührt deine Sicherheit?
Es wäre schön gewesen, wenn du uns verraten hättest, wie du auf die 266 kommst und vermindert um den zweiten Term als Resultat 143.150.176 erhältst?! [verwirrt]

Beschreibe deine Regel mal mit Worten, bitte.
Kann kannst du die weiteren Fragen wahrscheinlich selbst beantworten...

>  
> Aber wie schaut es hier aus?
>  Das 7-stellige Wort hat mindestens 2 gleiche Buchstaben:
>  
> Das 7-stellige Wort hat mindestens 3 gleiche Buchstaben:
>  
> Das 7-stellige Wort hat mindestens 2 gleiche Buchstaben und
> genau 1 Vokal:
>  
> Das 7-stellige Wort hat mindestens 2 gleiche Buchstaben und
> genau 2 Vokale:
>  Denkansätze gibts ja viele, aber wie genau das nun geht,
> weiss ich nicht. und rausfinden ob meine Ansätze (sind ja
> eigtl klar wie die lauten) richtig sind, kann ich ja auch
> nicht so einfach :(

Das Ganze hat etwas mit []Kombinatorik zu tun, dazu der Link...


Gruß informix

Bezug
                
Bezug
Binominalkoeffizienten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Sa 11.07.2009
Autor: kanuddel

huch, sorry, damit ist [mm] 26^6 [/mm] gemeint. nicht 266. ich schau mal ob ich obigen beitrag noch editieren kann, oder vllt gibts ja moderatoren.. bin ja neu hier
Gruß
Florian

Bezug
        
Bezug
Binominalkoeffizienten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 So 12.07.2009
Autor: kanuddel

kann mir keiner helfen???

Bezug
        
Bezug
Binominalkoeffizienten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:46 So 12.07.2009
Autor: ANTONIO

Hallo,
ich schreibe nur eine Mitteilung, da es keine vollständige Antwort ist.
Also Deine erste Lösung habe ich auch rausbekommen: Du berechnest die Anzall aller denkbaren Kombinationen und ziehst die Kombinationen ab, bei denen jeder Buchstabe genau einmal vorkommt. bei 7 statt 6 Stellen ist es genau das gleiche. Sollen mindestens 3 Buchstaben gleich sein, wären also von der Gesamtzahl der Möglichkeiten neben denen mit jedem Buchstaben genau einmal vorkommend die abzuziehen mit "jeder Buchstaben genau 2 mal vorkommend. Die Formel dafür läßt sich nach meiner Einschätzung mit kleineren Zahlen, zum Beispiel 3 Stellen und 5 Buchstaben oder Zahlen ganz gut transparent machen, herleiten und übertragen 26 * 1 * 25 * 24 * 23 * 22 * 21 * 7 * 6
Sie ergibt sich wie folgt:  26 * 1 * 25 * 24 * 23 * 22 * 21 ergibt die Anzahl der Möglichkeiten, daß die gleichen Buchstaben die ersten beiden Positionen einnehmen. Ingsesamt stehen aber für die erste "Version" des doppelten Buchstabens 7 Positionen zur Verfügung, für den zweiten nur noch 6, sie sind ja real nicht unterscheidbar

Bezug
        
Bezug
Binominalkoeffizienten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:17 Mo 13.07.2009
Autor: ANTONIO

Hallo noch mal,
ich habe mich doch noch an die Fragestellung mit 7 Buchstaben, mindestens zwei gleich, genau 1 Vokal gemacht:
ich fand es sinnvoll Vokale und Konsonaten getrennt zu betrachten:
Der Vokal kann an 7 möglichen Positionen stehen, es gibt davon 5 also 5 * 7 Möglichkeiten insgesamt in Kombination mit allen möglichen Konsonatenkombinationen.
Es gibt 21 Konsonaten mit dafür 6 offene Stellen, also [mm] 21^6 [/mm] Möglichkeiten  Konsonaten zu kombinieren abzüglich der Kombinationen, bei denen alle Konsonaten unterschiedlich sind (die Vokale sind es ja sowieso)
also [mm] 21^6 [/mm] - 21*20*19*18*17*16
jede Konsonatenkombination läßt sich mit jeder der 35 Vokalkombinationen kombinieren also ergibt sich
35 * [mm] (21^6 [/mm] - 21*20*19*18*17*16)

Achtung , bitte denk noch mal selber darüber nach, mein Mathe LK ist hoppla schon über 20 Jahre her und viel mehr habe ich zu Kombinatorik nicht gemacht, aber dies scheint mit soweit  plausibel.

Grüße
Antonio



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]