matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Binominalkoeffizient
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Binominalkoeffizient
Binominalkoeffizient < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binominalkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Do 26.10.2006
Autor: Lord-Fishbone

Aufgabe
Seien [mm] $n\in\IN$ [/mm] und [mm] $k\in\IN\cup\{0\}$. [/mm] Für $k [mm] \le [/mm] n$ definiere man den Binominalkoeffizienten [mm] \vektor{n \\ k} [/mm] als die Anzahl der k-elementigen Teilmengen von {1,...,n}.
Zeigen sie:
[mm] \vektor{n \\ k} [/mm] = [mm] \vektor{n-1 \\ k} [/mm] + [mm] \vektor{n-1 \\ k-1} [/mm] $(n [mm] \ge [/mm] 2 , [mm] 1\le [/mm] k < n)$

habe mittlerweile alles versucht habe aber nur eine lösung gefunden indem ich  [mm] \vektor{n \\ k} [/mm] = [mm] \bruch{n!}{k!(n-k)!} [/mm] gesetzt habe, was ich aber nicht darf. ich hoffe hier kann mir jemand weiter helfen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binominalkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Fr 27.10.2006
Autor: angela.h.b.


> Seien [mm]n\in\IN[/mm] und [mm]k\in\IN\cup\{0\}[/mm]. Für [mm]k \le n[/mm] definiere
> man den Binominalkoeffizienten [mm]\vektor{n \\ k}[/mm] als die
> Anzahl der k-elementigen Teilmengen von {1,...,n}.
>  Zeigen sie:
> [mm]\vektor{n \\ k}[/mm] = [mm]\vektor{n-1 \\ k}[/mm] + [mm]\vektor{n-1 \\ k-1}[/mm]  
> [mm](n \ge 2 , 1\le k < n)[/mm]

Hallo,

[willkommenmr].

Da für Euch [mm] \vektor{n \\ k} [/mm] als die Anzahl der k-elementigen Teilmengen einer Menge mit n Elementen definiert ist, mußt Du auf diese Definition zuruckgreifen.

1. Mal angenommen, Du hast eine Menge mit 5 Elementen und hast Dir die dreielementigen Teilmengen bereits zusammengestellt, Kennst also [mm] \vektor{5 \\ 3}. [/mm]

2. Nun fügst Du dieser Menge ein weiteres Element p zu, hast also nun eine 6-elementige Grundmenge.
Wie findest Du heraus, wie viele 3-elementige teilmengen diese Menge hat?
Zunächst einmal sind alle dreielementigen Mengen drin, in denen p nicht ist. Das sind die dreielementigen Mengen aus 1., also [mm] \vektor{5 \\ 3} [/mm] Stück.
Nun mußt Du die dreielementigen finden, in denen p enthalten ist. Wie kriegst Du die? Indem Du die zweielementigen der Menge aus 1. nimmst und jeweils das neue Element p hinzufügst. Das sind nocheinmal [mm] \vektor{5 \\ 2} [/mm] dazu.

Mit diesem Verfahren kannst Du die Aussage per Induktion über n beweisen. (k läßt Du fest. Induktionsanfang für n=k)

Gruß v. Angela







Bezug
                
Bezug
Binominalkoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:19 Fr 27.10.2006
Autor: Lord-Fishbone

danke ich denk damit komm ich zurecht und kann es beweisen vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]