matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Binomialverteilung für Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Statistik (Anwendungen)" - Binomialverteilung für Summe
Binomialverteilung für Summe < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung für Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Sa 05.12.2009
Autor: Lupi99

Aufgabe
Zeige dass die Summe von N unabhängigen Bernoulli-verteilten Zufallsvariablen X [mm] \sim [/mm] B(1,p) binomialverteilt ist mit [mm] \summe_{i=1}^{N}X_i \sim [/mm] B(N,p).

Hi,

ich scheitere leider an dieser Aufgabe. Ich habe nicht mal einen guten Anatz :(, da ich mich schon Frage, wie eine Summe aus Zahlen, was ja wiederum nur eine Zahl ist, binomialverteilt sein kann. Es kommt ja ein konkreter, diskreter Wert raus...

Ich habe die Binimialverteilung bis jetzt so verstanden, dass ich mit X [mm] \sim [/mm] B(a, b) bei a angebe, wie oft ein Ereigniss eintritt und bei b die Wahrscheinlichkeit angebene. Also für die Aufgabe ist daher B(N,p) angegeben, weil das in der Summe bis N steht, also N Ereignisse eintreten.

Was ich damit dann aber berechne weiß ich leider nicht.


Danke schonmal für Tips, Hinweise und Hilfe.

Gruß,
Lupi



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomialverteilung für Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 So 06.12.2009
Autor: luis52

Moin Lupi99,

[willkommenmr]

Da schau her.

vg Luis

Bezug
                
Bezug
Binomialverteilung für Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 So 06.12.2009
Autor: Lupi99

Vielen Dank. Das hat mir auf jeden Fall schonmal weitergeholfen, aber leider verstehe ich nicht alles daran. Das Problem ist auch, dass wir diese Faltungsformel nicht im Skript haben und ich auch nicht weiß, wie ich die herleiten kann.

Wir haben gegeben, was die Binomialverteilung ist:
[mm] P(X=k)=\vektor{n \\ k}*p^k*(1-p)*{n-k}) [/mm]
und was die Bernoulli Verteilung ist (tippe ich jetzt mal nicht ab).

Muss ich jetzt überhaupt rechnen:
[mm] P(\summe_{i=1}^{n}X_i=k)=\vektor{n \\ k}*p^k*(1-p)*{n-k}) [/mm]

Dann habe ich ja imho nur n*X und kann für k also immer n*X einsetzen. Was das mit er Faltungsformel zu tun hat, weiß ich leider nicht....

(OK, da tun sich sicherlich gerade Abgründe auf). Ich hab leider auch noch nicht verstanden, wie die Summe aus Zufallsvariablen verteilt sein kann. Das ist doch nur ein diskreter Wert, den man errechnet.

Bezug
                        
Bezug
Binomialverteilung für Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 So 06.12.2009
Autor: luis52

Moin,

> Vielen Dank. Das hat mir auf jeden Fall schonmal
> weitergeholfen, aber leider verstehe ich nicht alles daran.
> Das Problem ist auch, dass wir diese Faltungsformel nicht
> im Skript haben und ich auch nicht weiß, wie ich die
> herleiten kann.
>  
> Wir haben gegeben, was die Binomialverteilung ist:
> [mm]P(X=k)=\vektor{n \\ k}*p^k*(1-p)*{n-k})[/mm]
> und was die Bernoulli Verteilung ist (tippe ich jetzt mal
> nicht ab).
>  
> Muss ich jetzt überhaupt rechnen:
>  [mm]P(\summe_{i=1}^{n}X_i=k)=\vektor{n \\ k}*p^k*(1-p)*{n-k})[/mm]

Anbei findest du die Wsken [mm] $P(X_1=x_1,X_2=x_2)=P(X_1=x_1)P(X_2=x_2)$. [/mm]

$ [mm] \begin{tabular} {@{}cccc@{}} \hline &\multicolumn{2}{c}{x_2}\\\cline{2-3} x_1& 0 & 1 & \sum\\\hline 0 & (1-p)^2 & p(1-p) & 1-p \\ 1 & p(1-p) & p^2 & p \\\hline \sum &1-p & p & 1 \\ \hline \end{tabular} [/mm] $

Daraus kannst du ableiten [mm] $P(X_1+X_2=0)=P(X_1=0,X_2=0)=(1-p)^2=\binom{2}{0}p^0(1-p)^2$, $P(X_1+X_2=1)=P(X_1=0,X_2=1)+P(X_1=1,X_2=0)=2p(1-p)^2=\binom{2}{1}p^1(1-p)^1$, $P(X_1+X_2=2)=P(X_1=1,X_2=1)=p^2=\binom{2}{2}p^0(1-p)^2$. [/mm]

Wiederhole diese Vorgehensweise fuer [mm] $n=3,4,\dots$ [/mm] (Vollst. Induktion!)  

>
> Dann habe ich ja imho nur n*X und kann für k also immer
> n*X einsetzen. Was das mit er Faltungsformel zu tun hat,
> weiß ich leider nicht....


Du irrst. Stell dir vor, du wirfst zwei Wuerfel. Jedem Wurf ordnest du
die Augensumme zu. Dann nimmt die Summe der Werte [mm] 2,3,\dots,11,12 [/mm] an und
nicht, analog zu zu deiner Argumentation [mm] $2\cdot1,2\cdot2,\dots,2\cdot6. [/mm]



vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]