matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBinomialverteilung, Approximat
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Binomialverteilung, Approximat
Binomialverteilung, Approximat < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung, Approximat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 So 05.02.2017
Autor: ChopSuey

Aufgabe
In einer bestimmten Bevölkerungsgruppe beträgt der Mittelwert des Nettoeinkommens 1500€ bei einer Standardabweichung von 600€. Aus dieser Bevölkerungsgruppe werden nun 200 Personen als einfache Stichprobe zufällig ausgewählt (gehen Sie zur Vereinfachung von einer Auwahl mit Zurücklegen aus).

a) Mit welcher Wahrscheinlichkeit liegt das Durchschnittseinkommen der 200 ausgewählten Personen zwischen 1450€ und 1550€?

b) Wie viele Personen müsste man auswählen, damit die Wahrscheinlichkeit aus a) größer als 95% wird?

Hallo,

ich weiß nicht so recht, mit welchen Mitteln genau ich die Aufgabe zu lösen habe. Primär weiß ich noch nicht, wie ich die Info bzgl der Stichprobe von 200 Personen verwenden muss.

Meine Vermutung ist, dass es sich hier um eine binomialverteilte Zufallsvariable handelt, die approximiert werden soll durch eine Normalverteilung. Doch wie fließt die Stichprobengröße in die Approximation ein?

Ich berechne ja $ P (1450 < X < 1550) $.

Hat jemand einen Tipp oder kann mir sagen, was ich wissen muss um die Aufgabe zu lösen?

Vielen Dank!

LG,
ChopSuey

        
Bezug
Binomialverteilung, Approximat: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 So 05.02.2017
Autor: Al-Chwarizmi


> In einer bestimmten Bevölkerungsgruppe beträgt der
> Mittelwert des Nettoeinkommens 1500€ bei einer
> Standardabweichung von 600€. Aus dieser
> Bevölkerungsgruppe werden nun 200 Personen als einfache
> Stichprobe zufällig ausgewählt (gehen Sie zur
> Vereinfachung von einer Auwahl mit Zurücklegen aus).
>
> a) Mit welcher Wahrscheinlichkeit liegt das
> Durchschnittseinkommen der 200 ausgewählten Personen
> zwischen 1450€ und 1550€?
>  
> b) Wie viele Personen müsste man auswählen, damit die
> Wahrscheinlichkeit aus a) größer als 95% wird?
>  Hallo,
>  
> ich weiß nicht so recht, mit welchen Mitteln genau ich die
> Aufgabe zu lösen habe. Primär weiß ich noch nicht, wie
> ich die Info bzgl der Stichprobe von 200 Personen verwenden
> muss.
>  
> Meine Vermutung ist, dass es sich hier um eine
> binomialverteilte Zufallsvariable handelt, die approximiert
> werden soll durch eine Normalverteilung. Doch wie fließt
> die Stichprobengröße in die Approximation ein?
>  
> Ich berechne ja [mm]P (1450 < X < 1550) [/mm].
>  
> Hat jemand einen Tipp oder kann mir sagen, was ich wissen
> muss um die Aufgabe zu lösen?


Guten Abend  ChopSuey

Die zuerst gegebene Normalverteilung mit Mittelwert 1500
und Standardabweichung 600 gilt für jede einzelne der 200
ausgewählten Personen. Nun kann man die Verteilung der
Summe von 200 identischen (aber unabhängigen)
Verteilungen betrachten. Dividiert man dies durch 200, hat
man die Verteilung des Mittelwerts der 200 Einzeleinkommen.
Damit kann man dann die Wahrscheinlichkeit dafür berechnen,
dass dieser Mittelwert im Intervall (1450 .... 1550) liegt.

Die Verallgemeinerung für beliebiges n (anstelle von 200) ist
dann wohl klar.

LG  ,    Al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]