matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikBinomialverteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stochastik" - Binomialverteilung
Binomialverteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:18 Mo 02.02.2009
Autor: hasso

Hallo,

Die Zufallsvariable X sei Binomial Verteilt mit Erwartungswert E[X]=8 und Varianz V[x]=4,8. Geben sie folgende Wahrscheinlichkeiten unter Verwendung der beigefügten Tabelle an.

a) P ( X = 8)
b) P ( X [mm] \ge [/mm] 10)
c) P (4 < X < 12)

Man weiß das E[X]=n⋅p und V[X]=n⋅p(1-p) ist.
Tabelle ist gegeben nun meine  Frage:
Wie kann man die Wahrscheinlichkeit ermitteln wenn nicht B(n,p) gegeben ist. Man kann n ebenso nicht über k berechnen bei Binomialverteilung.
Bei der Tabelle muss man sich auch an n, k und p orientieren um die Wahrscheinlichkeit abzulesen.


LG hasso


        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mo 02.02.2009
Autor: luis52

Moin hasso,


[mm] $\operatorname{E}[X]=np=8$, $\operatorname{Var}[X]=np(1-p)=8(1-p)=4.8$. [/mm]
Zwei Gleichungen mit zwei Unbekannten...
              
vg Luis

Bezug
                
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:55 Di 03.02.2009
Autor: hasso

Hallo luis,
>  
>
> [mm]\operatorname{E}[X]=np=8[/mm],
> [mm]\operatorname{Var}[X]=np(1-p)=8(1-p)=4.8[/mm].
>  Zwei Gleichungen mit zwei Unbekannten...

danke ... daran hab ich gar nicht gedacht..war schon kurz vor der Verzweiflung =)

Rechnung:

E[X]: n*p =8

V[X]: n*p 1-p = 4.8 <=> 8 (1-p) = 4.8
p = 0.4

n * 0.4 = 8
n =20

a) Wahrscheinlichkeit für genau 8 zu treffer: P( X = 8) = [mm] \vektor{20 \\ 8} (0,4)^8 (0,6)^{12}= [/mm] 0,1797


b) Wahrscheinlickeit für mind. 10 treffer: P( X [mm] \ge [/mm] 10) = P(X = 20) -  P(X [mm] \le [/mm] 9)= 1 0,7553 = 0,2447


c)Wahrscheinlichkit für mindestens 5  und max 11 Treffer: P(  4< X < 12) = P(X = 11) - P(X = 4 )= 0.9325 - 0,0510= 0,8925


Damit müsst die Aufgabe gelöst sein!! nochmals danke für den TIPP!!

Somit muss Wahrscheinlichkeiten insgesamt bei n treffern 100% ergeben, korrekt?

LG hasso




Bezug
                        
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:47 Di 03.02.2009
Autor: luis52


>  
> Somit muss Wahrscheinlichkeiten insgesamt bei n treffern
> 100% ergeben, korrekt?
>  

Was willst du hier sagen?

vg Luis

Bezug
                                
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Mi 04.02.2009
Autor: hasso

Hallo luis,

> > Somit muss Wahrscheinlichkeiten insgesamt bei n treffern
> > 100% ergeben, korrekt?
>  >  
>
> Was willst du hier sagen?

ich meinte, wenn die Wahrscheinlichkeiten alle k bzw. x von n möglichkeiten bei der Binomialverteilung aufsummiert werden das dann 100% ergibt.



LG hassan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]