matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungBinomialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Binomialverteilung
Binomialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:05 Sa 03.01.2009
Autor: Sara

Hallo allerseits,

ich hänge an der Binomialverteilung fest. Ich habe bis jetzt alles verstehen, was mir eher Probleme macht ist

[mm] P(3\le [/mm] X [mm] \le [/mm] 8) = 0.3230

aber wie kommt man drauf ? :-S

Kann mir jemand dabei helfen und mir den genauen Rechnungsweg sagen?


LG
Sara

        
Bezug
Binomialverteilung: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:53 Sa 03.01.2009
Autor: Nicodemus

Hallo Sara,

Deine Frage ist völlig unklar, da du nicht geschrieben hast, um welche  Binomialverteilung (gegeben durch 2 Parameter n, p) es sich handelt!
Bitte gib die genaue Fragestellung an!





Bezug
                
Bezug
Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Sa 03.01.2009
Autor: Sara

oh sorry. Das habe ich vollkommen außer Acht gelassen n=20 und p=0.1

lg
Sara

Bezug
                        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Sa 03.01.2009
Autor: zetamy

Hallo Sara,

für X binomialverteilt gilt allgemein [mm] $P(X\leq [/mm] k)= [mm] \sum_{i=0}^k [/mm] {n [mm] \choose [/mm] i} [mm] p^i (1-p)^{n-i}$ [/mm] und für l<k [mm] $P(l\leq [/mm] X [mm] \leq k)=P(x\leq k)-P(X
In deinem Fall also [mm] $P(3\leq X\leq [/mm] 8) = [mm] \sum_{i=3}^8 [/mm] {20 [mm] \choose [/mm] i} [mm] p^i (1-p)^{20-i}= [/mm] {20 [mm] \choose [/mm] 3} [mm] (0,1)^3 [/mm] (1- [mm] 0,1)^{20-3} [/mm] + [mm] \dots [/mm] + {20 [mm] \choose [/mm] 8}  [mm] (0,1)^8 [/mm] (1- [mm] 0,1)^{20-8}$. [/mm]


Gruß, zetamy



Bezug
        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Sa 03.01.2009
Autor: zetamy

Antwort siehe unten.

Gruß, zetamy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]