matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungBinomialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Binomialverteilung
Binomialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Komplementärwahrscheinlichkeit
Status: (Frage) beantwortet Status 
Datum: 14:34 Di 26.02.2008
Autor: Tim221287

Aufgabe
90 Setzlinge einer seltenen Pflanze werden ausgebracht. Für jeden einzelnen ist
die Wahrscheinlichkeit, dass er anwächst, gleich 75%.

(a) Mit welcher Wahrscheinlichkeit wachsen wenigstens 62 Setzlinge an?
(b) Die Zufallsvariable X bezeichne die Anzahl der erfolgreich angewachsenen
Setzlinge. Bestimmen Sie den Erwartungswert von X.

In der Aufgabe sind gegeben n=90 ; k=62 ; p= 0.75

Ich hoffe so weit liege ich richtig. Nun habe ich das Problem das meine Tabelle für n=90 nur von p=0.21 bis p=0.30 geht.

Meine Frage für die Teilaufgabe a lautet also ob ich dann mit der komplementären Wahrscheinlichkeit (Also mit p=0.25) arbeiten darf oder ob ich k auch auf die komplementäre Wahrscheinlichkeit angleichen muss. also statt 62 dann 28

belasse ich k bei 62 müsste p ungefähr gleich 0 sein
setze ich k = 26 komme ich auf p=0.11331

also entweder 1 - 0
oder                 1 - 0.11331


oder bin ich mit meinem gedankengang völlig auf dem Holzpfad....?!
Wäre nett wenn mir jemand helfen könnte

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Di 26.02.2008
Autor: Tim221287

hatte ich leider noch vergessen zu fragen.

Die Lösung für b) ist doch

E(X) 0.75 * 90 = 67.5 oder irre ich mich da ?!

Bezug
                
Bezug
Binomialverteilung: alles richtig
Status: (Antwort) fertig Status 
Datum: 09:39 Mi 27.02.2008
Autor: informix

Hallo Tim221287,

> hatte ich leider noch vergessen zu fragen.
>  
> Die Lösung für b) ist doch
>
> E(X) = 0.75 * 90 = 67.5 oder irre ich mich da ?!  

alles [ok]


Gruß informix

Bezug
        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Di 26.02.2008
Autor: Adamantin


> 90 Setzlinge einer seltenen Pflanze werden ausgebracht. Für
> jeden einzelnen ist
>  die Wahrscheinlichkeit, dass er anwächst, gleich 75%.
>  
> (a) Mit welcher Wahrscheinlichkeit wachsen wenigstens 62
> Setzlinge an?
>  (b) Die Zufallsvariable X bezeichne die Anzahl der
> erfolgreich angewachsenen
>  Setzlinge. Bestimmen Sie den Erwartungswert von X.
>  In der Aufgabe sind gegeben n=90 ; k=62 ; p= 0.75
>  
> Ich hoffe so weit liege ich richtig. Nun habe ich das
> Problem das meine Tabelle für n=90 nur von p=0.21 bis
> p=0.30 geht.
>  
> Meine Frage für die Teilaufgabe a lautet also ob ich dann
> mit der komplementären Wahrscheinlichkeit (Also mit p=0.25)
> arbeiten darf oder ob ich k auch auf die komplementäre
> Wahrscheinlichkeit angleichen muss. also statt 62 dann 28
>  
> belasse ich k bei 62 müsste p ungefähr gleich 0 sein
>  setze ich k = 26 komme ich auf p=0.11331
>  
> also entweder 1 - 0
>  oder                 1 - 0.11331

Du willst am Anfang [mm] P(X\ge62) [/mm] berechnent mit p=0,75
Das bedeutet für die Tabelle, dass du hier den gewünschten Bereich durch 1-x erzielen musst:
[mm] P(X\ge62)=1-P(X\le61)=1-F(90;0,75;61) [/mm]

Dieser Ansatz hilft dir jedoch bei deinem Problem nicht weiter, also zurück zu meinem pff...
Damit du mit 0,25 rechnen kannst, musst du dir überlegen, was die Angabe über das Gegenereignis aussagt. Wenn 62 oder mehr Pflanzen wachsen sollen, dürfen also maximal 90-62=28 Pflanzen nicht wachsen!

[mm] P(X\le28) [/mm] mit p=0,25!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]