matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBinomialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Binomialverteilung
Binomialverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Fehlerrechnung
Status: (Frage) überfällig Status 
Datum: 14:29 Mo 21.05.2007
Autor: Luli80

Aufgabe
Schätzungsweise 15% der Bevölkerung sind Rhesus-negativ.
a) Berechne die Wahrscheinlichkeit P, dass von 10 Blutspendern genau einer RH-negativ ist.
b)Von welchem absoluten Fehler [mm] \vmat{ \Delta p}ist [/mm] bei der Angabe von p auszugehen?
c) Welcher absolute und welcher relative Fehler ergeben sich bei der Berechnung von P?

Also ich habe folgendes gemacht:

zu a)Ist eine Bernoulliverteilung
[mm] P=P(k=1)=\vektor{10\\ 1}* p^{1} [/mm] * (1 - [mm] p)^{9} [/mm]
[mm] P=P(k=1)=10*0,15^{1}*0,85^{9}=0,347 [/mm]

zu b)Da das p mit 0,15 angegeben ist, haben wir ja zwei Nachkommastellen, daher habe ich [mm] \vmat{ \Delta p} [/mm] = [mm] 0,5*10^{-n}=0,5*10{-2}= [/mm] 5*10{-3}

Ist es richtig????

zu c) das ist mein Problem. Normaler weise haben wir das immer mit Meßreihen gerechnet, wenn mehrere Meßwerte vorgegeben waren...Ich weiß nicht wie ich das angehen soll.

Kann mir bitte jemand genau aufzeigen wie ich da vorgehe? Ich will das verstehen.

Ich danke euch schon im Voraus für eure Hilfe

        
Bezug
Binomialverteilung: nicht genau, nur grob
Status: (Antwort) fertig Status 
Datum: 15:38 Mo 21.05.2007
Autor: statler


> Schätzungsweise 15% der Bevölkerung sind Rhesus-negativ.
>  a) Berechne die Wahrscheinlichkeit P, dass von 10
> Blutspendern genau einer RH-negativ ist.
>  b)Von welchem absoluten Fehler [mm]\vmat{ \Delta p}ist[/mm] bei der
> Angabe von p auszugehen?
>  c) Welcher absolute und welcher relative Fehler ergeben
> sich bei der Berechnung von P?

> zu b)Da das p mit 0,15 angegeben ist, haben wir ja zwei
> Nachkommastellen, daher habe ich [mm]\vmat{ \Delta p}[/mm] =
> [mm]0,5*10^{-n}=0,5*10{-2}=[/mm] 5*10{-3}

Sieht jedenfalls gut aus!

> zu c) das ist mein Problem. Normaler weise haben wir das
> immer mit Meßreihen gerechnet, wenn mehrere Meßwerte
> vorgegeben waren...Ich weiß nicht wie ich das angehen
> soll.
>  
> Kann mir bitte jemand genau aufzeigen wie ich da vorgehe?
> Ich will das verstehen.

Das gehört zum Thema Fehlerfortpflanzung. P ist doch eine Funktion von p. Dann ist [mm]\Delta[/mm]P [mm] \approx[/mm]  [mm]\Delta[/mm]p [mm] \* [/mm] P' (Taylorreihe nach dem 1. Glied abgebrochen)

Gruß aus HH-Harburg
Dieter




Bezug
                
Bezug
Binomialverteilung: Korrektur erwünscht
Status: (Frage) beantwortet Status 
Datum: 16:49 Mo 21.05.2007
Autor: Luli80

Hallo Dieter,

wenn nach Deiner Aussage [mm] \Delta [/mm] P [mm] \approx \Delta [/mm] p * P' ist, bin ich dann mit meiner Rechnung richtig?

[mm] P`=1*9(1-p)^{8} [/mm]
[mm] \Delta [/mm] P [mm] \approx 5*10^{-3} [/mm] * [mm] 1*9*(1-0,15)^{8} [/mm]
[mm] \Delta [/mm] P [mm] \approx [/mm] 0,012262073

[mm] \Delta [/mm] P/P = 0,012/0,347=0,035

Richtig so? Oder habe ich P`falsch abgeleitet?



Bezug
                        
Bezug
Binomialverteilung: Korrektur
Status: (Antwort) fertig Status 
Datum: 07:38 Di 22.05.2007
Autor: statler

Guten Morgen!

> [mm]P'=1*9(1-p)^{8}[/mm]

> Richtig so? Oder habe ich P'falsch abgeleitet?

Es ist doch
[mm] P=P(k=1)=\vektor{10\\ 1}[/mm] [mm]*[/mm][mm] p^{1}[/mm] [mm]*[/mm](1 - [mm] p)^{9} [/mm]
also
P(p) = 10[mm]*[/mm]p[mm]*[/mm](1 - [mm] p)^{9} [/mm]
Für P' = [mm] \bruch{dP}{dp} [/mm] brauchst du dann die Produkt- und die Kettenregel:
P' = 10[mm]*[/mm]1[mm]*[/mm][mm] (1-p)^{9} [/mm] + 10[mm]*[/mm]p[mm]*[/mm]9[mm]*[/mm][mm] (1-p)^{8}[/mm] [mm]*[/mm](-1)
= 10[mm]*[/mm][mm] (1-p)^{8}[/mm] [mm]*[/mm]((1-p) - 9[mm]*[/mm]p) = 10[mm]*[/mm][mm] (1-p)^{8}[/mm] [mm]*[/mm](1 - 10[mm]*[/mm]p)

Jetzt bist du wieder dran ....

Gruß aus HH-Harburg
Dieter


Bezug
        
Bezug
Binomialverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Mi 23.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]