matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikBinomialverteilte Zufallsgröße
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Kombinatorik" - Binomialverteilte Zufallsgröße
Binomialverteilte Zufallsgröße < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilte Zufallsgröße: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:19 So 11.04.2010
Autor: mathegenie_90

Aufgabe
Ein Prüfungsfragebogen enthält 25 Fragen,wobei von jeweils 4 vorgegebenen Antworten genau eine anzukreuzen ist. Zum Bestehen sind mindestens 15 richtige Antworten nötig. Wie groß ist die Wahrscheinlichkeit,dass ein Kandidat, der völlig willkürlich ankreuzt,den Test besteht? Mit wieviel richtigen Antworten ist bei einem solchen Kandidaten im Mittel zu rechnen?

Hallo liebe Forumfreunde,leider komme ich bei der oben genannten Aufgabe nicht weiter,deshalb bitte ich euch um eure Hilfe.

Leider fehlt mir auch jeglicher Ansatz.
Würd mich über jede Hilfe freuen.
Vielen Dank im Voraus.

MfG
Danyal

        
Bezug
Binomialverteilte Zufallsgröße: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 11.04.2010
Autor: abakus


> Ein Prüfungsfragebogen enthält 25 Fragen,wobei von
> jeweils 4 vorgegebenen Antworten genau eine anzukreuzen
> ist. Zum Bestehen sind mindestens 15 richtige Antworten
> nötig. Wie groß ist die Wahrscheinlichkeit,dass ein
> Kandidat, der völlig willkürlich ankreuzt,den Test
> besteht? Mit wieviel richtigen Antworten ist bei einem
> solchen Kandidaten im Mittel zu rechnen?
>  Hallo liebe Forumfreunde,leider komme ich bei der oben
> genannten Aufgabe nicht weiter,deshalb bitte ich euch um
> eure Hilfe.
>  
> Leider fehlt mir auch jeglicher Ansatz.

Hallo,
der Artikel trägt ganz richtig den Titel "binomialverteilte ZG".
Wenn X die Anzahl der Zufallstreffer angibt, so benötigst du hier [mm] P(X\ge15). [/mm]
Beantworte dir zunächst folgende Fragen:
Wie oft wird geraten? Wie wahrscheinlich ist ein einzelner Zufallstreffer?
Und was haben diese beiden Antworten für eine Rolle in Bezug auf die benötigten Kenngrößen einer Binomialverteilung?
Gruß Abakus

>  Würd mich über jede Hilfe freuen.
>  Vielen Dank im Voraus.
>  
> MfG
>  Danyal


Bezug
                
Bezug
Binomialverteilte Zufallsgröße: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:40 So 11.04.2010
Autor: mathegenie_90


> > Ein Prüfungsfragebogen enthält 25 Fragen,wobei von
> > jeweils 4 vorgegebenen Antworten genau eine anzukreuzen
> > ist. Zum Bestehen sind mindestens 15 richtige Antworten
> > nötig. Wie groß ist die Wahrscheinlichkeit,dass ein
> > Kandidat, der völlig willkürlich ankreuzt,den Test
> > besteht? Mit wieviel richtigen Antworten ist bei einem
> > solchen Kandidaten im Mittel zu rechnen?
>  >  Hallo liebe Forumfreunde,leider komme ich bei der oben
> > genannten Aufgabe nicht weiter,deshalb bitte ich euch um
> > eure Hilfe.
>  >  
> > Leider fehlt mir auch jeglicher Ansatz.
>  Hallo,
>  der Artikel trägt ganz richtig den Titel
> "binomialverteilte ZG".
>  Wenn X die Anzahl der Zufallstreffer angibt, so benötigst
> du hier [mm]P(X\ge15).[/mm]
>  Beantworte dir zunächst folgende Fragen:
>  Wie oft wird geraten?

geraten wird 25-mal,aber 15-mal raten ist um zu bestehen
>Wie wahrscheinlich ist ein einzelner

> Zufallstreffer?

1/4 ist die Wahrscheinlichkeit,dass man eine Frage richtig beantwortet

>  Und was haben diese beiden Antworten für eine Rolle in
> Bezug auf die benötigten Kenngrößen einer
> Binomialverteilung?

Jetzt weiß ich aber auch nicht mehr weiter.

Würd mich über jede Hilfe freuen.
Vielen Dank im Voraus.
MfG
Danyal


Bezug
                        
Bezug
Binomialverteilte Zufallsgröße: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 So 11.04.2010
Autor: abakus


> > > Ein Prüfungsfragebogen enthält 25 Fragen,wobei von
> > > jeweils 4 vorgegebenen Antworten genau eine anzukreuzen
> > > ist. Zum Bestehen sind mindestens 15 richtige Antworten
> > > nötig. Wie groß ist die Wahrscheinlichkeit,dass ein
> > > Kandidat, der völlig willkürlich ankreuzt,den Test
> > > besteht? Mit wieviel richtigen Antworten ist bei einem
> > > solchen Kandidaten im Mittel zu rechnen?
>  >  >  Hallo liebe Forumfreunde,leider komme ich bei der
> oben
> > > genannten Aufgabe nicht weiter,deshalb bitte ich euch um
> > > eure Hilfe.
>  >  >  
> > > Leider fehlt mir auch jeglicher Ansatz.
>  >  Hallo,
>  >  der Artikel trägt ganz richtig den Titel
> > "binomialverteilte ZG".
>  >  Wenn X die Anzahl der Zufallstreffer angibt, so
> benötigst
> > du hier [mm]P(X\ge15).[/mm]
>  >  Beantworte dir zunächst folgende Fragen:
>  >  Wie oft wird geraten?
> geraten wird 25-mal,aber 15-mal raten ist um zu bestehen
>  >Wie wahrscheinlich ist ein einzelner
> > Zufallstreffer?
>  1/4 ist die Wahrscheinlichkeit,dass man eine Frage richtig
> beantwortet
>  >  Und was haben diese beiden Antworten für eine Rolle in
> > Bezug auf die benötigten Kenngrößen einer
> > Binomialverteilung?
>  
> Jetzt weiß ich aber auch nicht mehr weiter.

Du benötigst zwei Werte, die fast immer mit n und p bezeichnet werden.
Diese Zahlenwerte dafür hast du eben in deiner Antwort schon genannt.

>  
> Würd mich über jede Hilfe freuen.
>  Vielen Dank im Voraus.
>  MfG
>  Danyal
>  


Bezug
                                
Bezug
Binomialverteilte Zufallsgröße: Tipp
Status: (Frage) beantwortet Status 
Datum: 07:55 Mo 12.04.2010
Autor: mathegenie_90

Hallo und vielen Dank für die schnelle Hilfe

> > > > Ein Prüfungsfragebogen enthält 25 Fragen,wobei von
> > > > jeweils 4 vorgegebenen Antworten genau eine anzukreuzen
> > > > ist. Zum Bestehen sind mindestens 15 richtige Antworten
> > > > nötig. Wie groß ist die Wahrscheinlichkeit,dass ein
> > > > Kandidat, der völlig willkürlich ankreuzt,den Test
> > > > besteht? Mit wieviel richtigen Antworten ist bei einem
> > > > solchen Kandidaten im Mittel zu rechnen?
>  >  >  >  Hallo liebe Forumfreunde,leider komme ich bei der
> > oben
> > > > genannten Aufgabe nicht weiter,deshalb bitte ich euch um
> > > > eure Hilfe.
>  >  >  >  
> > > > Leider fehlt mir auch jeglicher Ansatz.
>  >  >  Hallo,
>  >  >  der Artikel trägt ganz richtig den Titel
> > > "binomialverteilte ZG".
>  >  >  Wenn X die Anzahl der Zufallstreffer angibt, so
> > benötigst
> > > du hier [mm]P(X\ge15).[/mm]
>  >  >  Beantworte dir zunächst folgende Fragen:
>  >  >  Wie oft wird geraten?
> > geraten wird 25-mal,aber 15-mal raten ist um zu bestehen
>  >  >Wie wahrscheinlich ist ein einzelner
> > > Zufallstreffer?
>  >  1/4 ist die Wahrscheinlichkeit,dass man eine Frage
> richtig
> > beantwortet
>  >  >  Und was haben diese beiden Antworten für eine Rolle
> in
> > > Bezug auf die benötigten Kenngrößen einer
> > > Binomialverteilung?
>  >  
> > Jetzt weiß ich aber auch nicht mehr weiter.
>  Du benötigst zwei Werte, die fast immer mit n und p
> bezeichnet werden.
>  Diese Zahlenwerte dafür hast du eben in deiner Antwort
> schon genannt.

n=25
p= 0,25

jetzt weiß ich aber nicht welche Formel hier anzuwenden ist. ?

Vielen Dank im Voraus.
MfG
Danyal

Bezug
                                        
Bezug
Binomialverteilte Zufallsgröße: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Mo 12.04.2010
Autor: steppenhahn

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!

> n=25
>  p= 0,25
>  
> jetzt weiß ich aber nicht welche Formel hier anzuwenden
> ist. ?

Du kennst doch hoffentlich die Formel für die Binomialverteilung (Bernoulli-Kette)?

$P(X = k) = \vektor{n\\k}*p^{k}*\left(1-p)^{n-k}$

Du willst wissen:

$P(X\ge 15) = P(X = 15) + P(X=16) + ... + P(X = 25)$.


Für so etwas gibt es aber auch Tabellen in deinem Tafelwerk!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]