matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikBinomialreihe, umformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Diskrete Mathematik" - Binomialreihe, umformen
Binomialreihe, umformen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialreihe, umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Mo 11.02.2013
Autor: quasimo

F(z)= [mm] \frac{1 \pm \sqrt{1-4z}}{2z} [/mm]
Nur eine dieser Lösungen ist eine Potenzreihenlösung (nämlich die mit dem Minuszeichen)

Frage:
Wieso ist die mit Minuszeichen eine Potenzreihe und die mit + nicht?



Wäre nett wenn mir da wer helfen könnte.
LG

        
Bezug
Binomialreihe, umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Mo 11.02.2013
Autor: Helbig


> F(z)= [mm]\frac{1 \pm \sqrt{1-4z}}{2z}[/mm]
>  Nur eine dieser
> Lösungen ist eine Potenzreihenlösung (nämlich die mit
> dem Minuszeichen)
>  
> Frage:
>  Wieso ist die mit Minuszeichen eine Potenzreihe und die
> mit + nicht?

Gemeint ist wohl, daß sich die Funktion mit Pluszeichen nicht als Potenzreihe mit dem Entwicklungspunkt 0 darstellen läßt. Und dies liegt daran, daß die "Plusfunktion" nicht für $z [mm] \to [/mm] 0$ konvergiert.

Gruß,
Wolfgang

Bezug
                
Bezug
Binomialreihe, umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Mo 11.02.2013
Autor: quasimo

Hallo
Aber wieso lässt sich die Minusfunktion als Potenzreihe mit dem Entwicklungspunkt 0 darstellen?
Das sehe ich nicht.

lg

Bezug
                        
Bezug
Binomialreihe, umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Mo 11.02.2013
Autor: Helbig

Hallo quasimo,

>  Aber wieso lässt sich die Minusfunktion als Potenzreihe
> mit dem Entwicklungspunkt 0 darstellen?

Rechne die Potenzreihe aus. Beginne mit der Binomialreihe für [mm] $(z+1)^{1/2}\,.$ [/mm]

Gruß,
Wolfgang


Bezug
                                
Bezug
Binomialreihe, umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Mo 11.02.2013
Autor: quasimo

Hallo
nun $ [mm] (z+1)^{1/2}\,. [/mm] $ = [mm] \sum_{n\ge0} \vektor{1/2 \\ n}z^n [/mm]

Aber ich verstehe den Zusammenhang mit meiner Frage nicht..

LG

Bezug
                                        
Bezug
Binomialreihe, umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Mo 11.02.2013
Autor: Helbig


> Hallo
>  nun [mm](z+1)^{1/2}\,.[/mm] = [mm]\sum_{n\ge0} \vektor{1/2 \\ n}z^n[/mm]
>  
> Aber ich verstehe den Zusammenhang mit meiner Frage
> nicht..

Na ja, dies ist schon mal eine Potenzreihe mit Entwicklungspunkt 0 (und Konvergenzradius 1). Und hiervon ausgehend kannst Du eine Potenzreihe für die Minusfunktion angeben.

Grüße,
Wolfgang


Bezug
                                                
Bezug
Binomialreihe, umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Mo 11.02.2013
Autor: quasimo

F(z)= $ [mm] \frac{1 \pm \sqrt{1-4z}}{2z} [/mm] $
Wenn ich das vorhergesagte von dir einsetzte, erhalte ich:
  [mm] \frac{1 \pm \sum_{n\ge0} \vektor{1/2 \\ n}(-4z)^n}{2z} [/mm]

WO sehe ich nun das es mit minus eine Potenzreihe gibt?
Tut mir leid ich hatte Potenzreihen nur angeschliffen in Diskrete Mathematik. Die AnalysisVo. dazu habe ich noch nicht gemacht. Würde trotzdem aber gene verstehen wie es bei den Bsp zu machen ist.

Bezug
                                                        
Bezug
Binomialreihe, umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Mo 11.02.2013
Autor: Helbig


> F(z)= [mm]\frac{1 \pm \sqrt{1-4z}}{2z}[/mm]
> Wenn ich das vorhergesagte von dir einsetzte, erhalte ich:
>    [mm]\frac{1 \pm \sum_{n\ge0} \vektor{1/2 \\ n}(-4z)^n}{2z}[/mm]
>
> WO sehe ich nun das es mit minus eine Potenzreihe gibt?

Beim Minus verschwindet im Zähler der Koeffizient bei [mm] $z^0\,.$ [/mm] Und Division durch 2z ergibt eine Potenzreihe.

Gruß,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]