matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikBinomialkoeffizienten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - Binomialkoeffizienten
Binomialkoeffizienten < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 Mi 27.02.2008
Autor: johnny11

Aufgabe
Zeigen Sie, dass für n [mm] \ge [/mm] 2 gilt:
a) 1- [mm] \vektor{n\\ 1} [/mm] + [mm] \vektor{n\\ 2} [/mm] + ... + [mm] (-1)^n*\vektor{n \\ n} [/mm] = 0
b) [mm] \vektor{n\\ 1} [/mm] + [mm] 2\vektor{n\\ 2} [/mm] + [mm] 3\vektor{n\\ 3} [/mm] + ... + [mm] n\vektor{n\\n} [/mm] = [mm] n2^{n-1} [/mm]

Bei Aufgabe a)  habe ich zuersten den Fall für n = ungerade betrachtet. Mit Hilfe des Pascalschen Dreiecks habe ich die Behauptung dann ganz einfach zeigen können. Aber beim Fall für n = gerade sehe ich nicht weiter. Soll man dies auch mit dem Pascalschen Dreieck zeigen? Oder wie genau?

Bei Aufgabe b) muss man doch irgendwie mit der Ableitung von [mm] (1+x)^n [/mm] arbeiten...! Doch wie geht man da am Besten vor?



        
Bezug
Binomialkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Mi 27.02.2008
Autor: angela.h.b.


> Zeigen Sie, dass für n [mm]\ge[/mm] 2 gilt:
>  a) 1- [mm]\vektor{n\\ 1}[/mm] + [mm]\vektor{n\\ 2}[/mm] + ... +
> [mm](-1)^n*\vektor{n \\ n}[/mm] = 0

Hallo,

ich nehme an, daß der binomische Lehrsatz [mm] (x+y)^n=\summe_{k=0}^{n}\vektor{n \\ k}x^ky^{n-k} [/mm]
bekannt ist.

Für x:=-1 und y=1 bekommst Du sofort die Behauptung.


>  b) [mm]\vektor{n\\ 1}[/mm] + [mm]2\vektor{n\\ 2}[/mm] + [mm]3\vektor{n\\ 3}[/mm] +
> ... + [mm]n\vektor{n\\n}[/mm] = [mm]n2^{n-1}[/mm]

> Bei Aufgabe b) muss man doch irgendwie mit der Ableitung
> von [mm](1+x)^n[/mm] arbeiten...!

Ja, das kannst Du tun.

Sei [mm] f_n(x):=(x+1)^n [/mm]

[mm] =\summe_{k=0}^{n}\vektor{n \\ k}x^k [/mm]       (binomischer Satz)

Jetzt ableiten, und dann die Ableitung an der Stelle x=1 betrachten.

Gruß v. Angela


Bezug
                
Bezug
Binomialkoeffizienten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Mi 27.02.2008
Autor: johnny11

yep, alles klar.
Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]