matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBinomialkoeffizient
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Binomialkoeffizient
Binomialkoeffizient < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: Tipps
Status: (Frage) beantwortet Status 
Datum: 11:39 So 18.11.2012
Autor: Mathegirl

Aufgabe
Beim Fußballtunier gibt es mehrere Mannschaften. Jede Mannschaft soll gegen jede spielen.

a) wie viele Spiele gibt es, wenn insgesamt 3,4,6 Mannschaften spielen? Gib eine begründete Lösung mit Hilfe von Binomialkoeffizienten an und für den Fall 4 eine konkretete Lösung durch Auflisten aller Fälle.

b) Gib eine allgemeine Lösung für n Mannschaften an.

c) Gib mit elementaren Mitteln (Ohne explizite Verwendung des Binomialkoeffizienten) eine Lösung an für b)
b)

a) Für den Fall 3 Mannschaften: immer 2 Mannschaften spielen gegeneinander, also  [mm] \vektor{3 \\ 2}= [/mm] 3

(1,2),(1,3),(2,3)

4 Mannschaften: n=4, k=2
[mm] \vektor{4 \\ 2}=6 [/mm]

(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)

6 Mannschaften: n=6, k=2
[mm] \vektor{6 \\ 2}=15 [/mm]

Begründung: Es wird angegeben auf wie viele verschiedene Arten 3,4,6 Mannschaften spielen können, wobei immer 2 Mannschaften gegeneinander spielen. Die Reihenfolge ist hier egal, also (1,2) ist identsich zu (2,1)

b) Für n Mannschaften gilt dann [mm] \vektor{n \\ 2} [/mm] Aber wie soll man das begründen? Ist doch eigentlich die gleiche Begründung wie in a)

c) Hier weiß ich nicht weiter. Wie soll ich die Möglichkeiten zeigen, wie n Mannschaften gegeneinander spielen können ohne Binomilakoeffizienten?


MfG
Mathegirl

        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 So 18.11.2012
Autor: fred97


> Beim Fußballtunier gibt es mehrere Mannschaften. Jede
> Mannschaft soll gegen jede spielen.
>  
> a) wie viele Spiele gibt es, wenn insgesamt 3,4,6
> Mannschaften spielen? Gib eine begründete Lösung mit
> Hilfe von Binomialkoeffizienten an und für den Fall 4 eine
> konkretete Lösung durch Auflisten aller Fälle.
>
> b) Gib eine allgemeine Lösung für n Mannschaften an.
>  
> c) Gib mit elementaren Mitteln (Ohne explizite Verwendung
> des Binomialkoeffizienten) eine Lösung an für b)
>  b)
>  a) Für den Fall 3 Mannschaften: immer 2 Mannschaften
> spielen gegeneinander, also  [mm]\vektor{3 \\ 2}=[/mm] 3
>  
> (1,2),(1,3),(2,3)
>  
> 4 Mannschaften: n=4, k=2
>  [mm]\vektor{4 \\ 2}=6[/mm]
>  
> (1,2),(1,3),(1,4),(2,3),(2,4),(3,4)
>  
> 6 Mannschaften: n=6, k=2
>  [mm]\vektor{6 \\ 2}=15[/mm]
>  
> Begründung: Es wird angegeben auf wie viele verschiedene
> Arten 3,4,6 Mannschaften spielen können, wobei immer 2
> Mannschaften gegeneinander spielen. Die Reihenfolge ist
> hier egal, also (1,2) ist identsich zu (2,1)
>  
> b) Für n Mannschaften gilt dann [mm]\vektor{n \\ 2}[/mm] Aber wie
> soll man das begründen? Ist doch eigentlich die gleiche
> Begründung wie in a)
>  
> c) Hier weiß ich nicht weiter. Wie soll ich die
> Möglichkeiten zeigen, wie n Mannschaften gegeneinander
> spielen können ohne Binomilakoeffizienten?

Fangen wir mit Mannschaft 1 an:

(1,2), (1,3), ...,(1,n). Das sind schon mal n-1 Spiele.

Manschaft 2: das Spie gegen 1 ist oben schon erfasst, also bleiben:

(2,3), ...., (2,n). Wir haben weitere n-2 Spiele.

......

......

Mannschaft n-1 hat jetzt nur noch 1 Spiel:

(n-1,n)

Fazit: Anzahl der Spiele: (n-1)+(n-2)+...+2+1= [mm] \bruch{(n-1)*n}{2} [/mm]

FRED

>  
>
> MfG
>  Mathegirl


Bezug
        
Bezug
Binomialkoeffizient: Alternative
Status: (Antwort) fertig Status 
Datum: 12:06 So 18.11.2012
Autor: Helbig

Hallo Mathegirl,


> Beim Fußballtunier gibt es mehrere Mannschaften. Jede
> Mannschaft soll gegen jede spielen.
>  
> a) wie viele Spiele gibt es, wenn insgesamt 3,4,6
> Mannschaften spielen? Gib eine begründete Lösung mit
> Hilfe von Binomialkoeffizienten an und für den Fall 4 eine
> konkretete Lösung durch Auflisten aller Fälle.
>
> b) Gib eine allgemeine Lösung für n Mannschaften an.
>  
> c) Gib mit elementaren Mitteln (Ohne explizite Verwendung
> des Binomialkoeffizienten) eine Lösung an für b)
>  b)
>  a) Für den Fall 3 Mannschaften: immer 2 Mannschaften
> spielen gegeneinander, also  [mm]\vektor{3 \\ 2}=[/mm] 3
>  
> (1,2),(1,3),(2,3)
>  
> 4 Mannschaften: n=4, k=2
>  [mm]\vektor{4 \\ 2}=6[/mm]
>  
> (1,2),(1,3),(1,4),(2,3),(2,4),(3,4)
>  
> 6 Mannschaften: n=6, k=2
>  [mm]\vektor{6 \\ 2}=15[/mm]
>  
> Begründung: Es wird angegeben auf wie viele verschiedene
> Arten 3,4,6 Mannschaften spielen können, wobei immer 2
> Mannschaften gegeneinander spielen. Die Reihenfolge ist
> hier egal, also (1,2) ist identsich zu (2,1)

Richtig!

>  
> b) Für n Mannschaften gilt dann [mm]\vektor{n \\ 2}[/mm] Aber wie
> soll man das begründen? Ist doch eigentlich die gleiche
> Begründung wie in a)

Genau!

> c) Hier weiß ich nicht weiter. Wie soll ich die
> Möglichkeiten zeigen, wie n Mannschaften gegeneinander
> spielen können ohne Binomilakoeffizienten?

Betrachte das kartesische Produkt [mm] $\{1, 2, ... n\}\times \{1, 2, ... n\}\,.$ [/mm] Die Zahl der Paare ist dann [mm] $n^2$. [/mm] Ziehe die Diagonale ab, da die Mannschaften nicht gegen sich selbst spielen, gibt [mm] $n^2-n$. [/mm] Für jedes Spiel haben wir zwei Paare, nämlich (i, k) und (k, i).
Damit ist Zahl der Spiele [mm] $\frac {n^2-n} 2\,.$ [/mm]

Gruß,
Wolfgang

Bezug
                
Bezug
Binomialkoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 So 18.11.2012
Autor: Mathegirl

Danke für eure Erklärungen! Jetzt wo ich es sehe ist es eigentlich logisch, ich bin selbst aber nicht darauf gekommen.


MfG
Mathegirl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]