matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikBinomialkoeffizient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Kombinatorik" - Binomialkoeffizient
Binomialkoeffizient < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:44 Mo 25.10.2010
Autor: folken

Aufgabe
Beweisen Sie für n,m [mm] \in \IN [/mm] mit m <= n die Identität

[mm] \vektor{n \\ m-1} [/mm] + [mm] \vektor{n \\ m} [/mm] = [mm] \vektor{n+1 \\ m} [/mm]

ohne Verwendung der Gleichung [mm] \vektor{n \\ k} =\bruch{n!}{(n-k)!*k!} [/mm]


Hallo,

mein Problem ist, dass ich mir nicht vorstellen kann, wie eine (m-1) elementige Teilmenge einer n-elementigen Menge aussehen soll.

Mein Verständnis: Wenn ich eine Teilmenge(eine m-elementige Teilmenge) rausnehme, dann wird ja auch implizit auch aus der n-elementigen Menge was entfernt, aber dann ist das doch der Ausdruck : [mm] \vektor{n-1 \\ m-1} [/mm] und nicht der obige Ausdruck [mm] \vektor{n \\ m-1}. [/mm]

Kann mir jemand erklären wo mein Denkfehler ist?

        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Mo 25.10.2010
Autor: vivo

Hallo,

[mm]\vektor{n \\ m-1}[/mm] = [mm]\vektor{n+1 \\ m} - \vektor{n \\ m} [/mm]

wie viel mehr Möglichkeiten gibt es eine m-elementige Teilmenge aus einer (n+1)-elementigen als aus einer n-elementigen Menge herauszunehmen?

Wir finden einfach alle Möglichkeiten eine (m-1)-elementige Teilmenge aus einer n-elementigen Menge herauszunehmen und hängen gedanklich an jede gefundene Teilmenge das (n+1)'te Element an, dann haben wir m-elementige Teilmengen.

Nur zum Verständnis, bewiesen werden muss es natürlich noch.

Gruß


Bezug
                
Bezug
Binomialkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 Mo 25.10.2010
Autor: folken

Danke für deine Antwort.

Ich komme irgendwie nicht auf die Lösung, wobei ich das Thema mit dem Binomialkoeffizienten und den Teilmengen der Mengen wohl verstanden habe.
Kann mir jemand einen Ansatz geben?

Bezug
                        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Mo 25.10.2010
Autor: MathePower

Hallo folken,

> Danke für deine Antwort.
>  
> Ich komme irgendwie nicht auf die Lösung, wobei ich das
> Thema mit dem Binomialkoeffizienten und den Teilmengen der
> Mengen wohl verstanden habe.
>  Kann mir jemand einen Ansatz geben?


Nach dem binomischen Satz gilt:

[mm]\left(1+t\right)^{n}=\summe_{m=0}^{n}\pmat{n \\ m}t^{m}[/mm]

Entsprechend gilt:

[mm]\left(1+t\right)^{n+1}=\summe_{m=0}^{n+1}\pmat{n+1 \\ m}t^{m}[/mm]

Um obiges zu zeigen, multipliziere zunächst den Ausdruck

[mm]\summe_{m=0}^{n}\pmat{n \\ m}t^{m}[/mm]

mit 1+t

Berechne also

[mm]\left(1+t\right)*\summe_{m=0}^{n}\pmat{n \\ m}t^{m}[/mm]

und vergleiche dies mit

[mm]\summe_{m=0}^{n+1}\pmat{n+1 \\ m}t^{m}[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]