matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Binomialkoeffizient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Binomialkoeffizient
Binomialkoeffizient < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:09 Do 02.11.2006
Autor: verachris3

Aufgabe
Auf n Zellen sollen k nicht unterscheidbare Teilchen so verteilt werden, dass jede beliebig viele Teilchen aufnehmen kann. Zeigen sie, dass es genau [mm] \vektor{n+k-1 \\ k} [/mm] verschiedene Verteilungen gibt.
Tipp: Beim Induktionsschluss von n auf n+1 kann man die Verteilungen auf n+1 Zellen ordnen nach der Teilchenzahl in der letzten Zelle.

Hallo,

ich habe das als Hausaufgabe! Ich kann zwar nachvollziehen, dass die Verteilungen so berechnet werden und auch in etwa wie man darauf kommt, ich versteh aber nicht mit was hier die Induktion durchgeführt werden soll!
Für eure Hilfe bedanke ich mich im Voraus!!

        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Fr 03.11.2006
Autor: angela.h.b.


> Auf n Zellen sollen k nicht unterscheidbare Teilchen so
> verteilt werden, dass jede beliebig viele Teilchen
> aufnehmen kann. Zeigen sie, dass es genau [mm]\vektor{n+k-1 \\ k}[/mm]
> verschiedene Verteilungen gibt.
>  Tipp: Beim Induktionsschluss von n auf n+1 kann man die
> Verteilungen auf n+1 Zellen ordnen nach der Teilchenzahl in
> der letzten Zelle.

>ich versteh aber nicht mit was hier

> die Induktion durchgeführt werden soll!

Hallo,

Du sollst eine Induktion über n machen, wie Dir auch schon der Tip nahelegt.

Aber ich weiß schon, wo Dein Problem liegt: das k...

Das k wählst Du beliebig, aber fest.

Das bedeutet, daß Du k wie eine feststehende natürliche Zahl behandelst:
als würdest Du untersuchen, auf wieviele Arten 5 Teilchen auf n Zellen verteilt werden können. Im Induktionsschluß verteilt man dann 5 Teilchen auf n+1 Zellen.

Verstanden? Das k ist fest im Verlauf der Rechnung. Es kümmert sich nicht um Induktion.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]