matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBinomialkoeffizent - Teilmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Binomialkoeffizent - Teilmenge
Binomialkoeffizent - Teilmenge < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizent - Teilmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 So 26.11.2006
Autor: stepho

Aufgabe
Zeigen Sie mit vollständiger Induktion, dass eine n-Elementige Menge genau [mm] \vektor{n \\ k} [/mm] Teilmengen mit k Elementen enthält. n,k [mm] \in \IN_0 [/mm] k [mm] \le [/mm] n

Der Induktionsanfang erscheint ja relativ simpel. Für n=0 (leere Menge) ist lediglich die leere Menge Teilmenge, [mm] \vektor{0 \\ 0} [/mm] =1
Wie ich nun den Induktionsschritt beginnen könnte, ist mir nicht wirklich klar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Binomialkoeffizent - Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 So 26.11.2006
Autor: moudi

Hallo stepho

Sei $x$ ein Fix gewähltes Element der n-elementigen Menge X.
Dann kannst du die k-elementigen Teilmengen von X auf teilen in diejenigen Teilmengen, die x enthalten, dass sind aber gleich der Anzahle (k-1)-elementige Teilmengen von [mm] $X\smallsetminus\{x\}$ [/mm] und in diejenigen Teilmengen, die x nicht enthalten, das ist gleich der Anzahle k-elementigen Teilmengen von [mm] $X\smallsetminus\{x\}$. [/mm]

Bemerkung: Die Induktions"variable" ist die Summe m=n+k. Du darfst die Behauptung für m-1 annehmen.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]