matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBinomialkoeff: n über n+1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Binomialkoeff: n über n+1
Binomialkoeff: n über n+1 < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeff: n über n+1: Frage
Status: (Frage) beantwortet Status 
Datum: 15:29 Mi 29.12.2004
Autor: Grave

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Warum ist n über (n+1) = 0 ?

n!/(n+1)!(n-n-1)!
=
1/(n+1)(-1)!
...

= 0

Soweit komme ich bei meiner Umformung, aber weiter weiß ich leider nicht!

Vielen Dank für Antworten, MfG GRAVE

        
Bezug
Binomialkoeff: n über n+1: Definitionssache
Status: (Antwort) fertig Status 
Datum: 16:32 Mi 29.12.2004
Autor: Faenol

Hi Grave !

Meines Kenntnisstandes wird das definiert:

[mm] \vektor{n \\ k}=0 [/mm] für k>n

In deinem Fall ist n+1 > n .

[Mit Vorsicht zu genießen]

Selbst, wenn man es nicht als definiert ansehen möchte, gelangt man schnell zu einem Problem der Fakultät:
Deine Umformungen sind ja richtig, nur was ist (-1)! ?
Eigentlich fängt die Fakultät ja bei 0!=1 an, und das Resultat der Fakultät ist auf jeden Fall positiv:

Würde man versuchen, es abzuschätzen:
Ignorieren wir mal, dass (-1)! gar nicht definiert ist, und gehen davon aus, dass im Allgemeinen 1! [mm] \le [/mm] 2! [mm] \le [/mm] 3!... gilt.
[mm] n!/(n+1)!(-1)!\ge [/mm] n!/(n+1)!(0)!=n!/(n+1)!=n*(n+1)!/(n+1)!=n

=> [mm] \bruch{n!}{(n+1)!(-1)!} \ge [/mm] n folgt:

Das ist aber schon ein Widerspruch, da es nicht für alle n gilt:
[mm] \bruch{1}{2*(-1)!} [/mm] < 1 !

[/ Mit Vorsicht zu genießen]

Auch von der Bedeutung der Bio.koeff. macht es Sinn, die Anzahl der Kombinationsmöglichkeiten einer Teilmenge aus einer kleineren Menge ermitteln ?

Faenôl

Bezug
        
Bezug
Binomialkoeff: n über n+1: ... folgt aus Definition
Status: (Antwort) fertig Status 
Datum: 16:40 Mi 29.12.2004
Autor: Loddar

Hallo Grave,

erstmal [willkommenmr] !!

Gemäß Definition gilt:
[mm] $\vektor{n \\ k} [/mm] := [mm] \bruch{n*(n-1)*(n-2)*...*(n-k+1)}{1*2*3*...*k}$ [/mm]

Für unser Beispiel heißt das:

[mm] $\vektor{n \\ n+1}$ [/mm]
$= [mm] \bruch{n*(n-1)*(n-2)*...*(n-(n+1)+1)}{1*2*3*...*n*(n+1)}$ [/mm]
$= [mm] \bruch{n*(n-1)*(n-2)*...*(n-n-1+1)}{1*2*3*...*n*(n+1)}$ [/mm]
$= [mm] \bruch{n*(n-1)*(n-2)*...*0}{1*2*3*...*n*(n+1)}$ [/mm]
$= [mm] \bruch{0}{(n+1)!}$ [/mm]

Aufgrund der 0 im Zähler gilt also:
[mm] $\vektor{n \\ n+1} [/mm] = 0$

Es gilt immer: [mm] $\vektor{n \\ k} [/mm] = 0$ für k > n
Dieser Ausdruck ist also nicht explizit definiert, sondern ergibt sich unmittelbar aus der ursprünglichen Definition des Binomialkoeffizienten.


Grüße
Loddar


Bezug
                
Bezug
Binomialkoeff: n über n+1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Mi 29.12.2004
Autor: Grave

Hallo,

vielen Dank für die Antworten.
Habe es mir eben nochmal angeguckt und bin dabei noch ein 2 andere Wege gestoßen:

Einmal kann man das mit dem Rechenregel für BinKoeff. etwas auseinanderziehen und dann steht da 1/bla - 1/bla = 0.

Folgt wie schon gesagt, aus der Definition, die wir auch in der Vorlesung hatten,

dass n über k =
n!/k!(n-1)! WENN k [mm] $\in${0,1 ... n} [/mm]
0 sonst.

da aber mein k nicht in {0,1 ... n} liegt, ist das Ergebnis Null.

Sollte in Zukunft mir die Definitionen genauer angucken.

Trotzdem vielen Dank für die Antworten...

MfG GRAVE


Bezug
                        
Bezug
Binomialkoeff: n über n+1: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Do 30.12.2004
Autor: Loddar

  
> Einmal kann man das mit dem Rechenregel für BinKoeff. etwas
> auseinanderziehen und dann steht da 1/bla - 1/bla = 0.

[verwirrt] Das sehe ich so ad hoc nicht, aber das soll jetzt nichts heißen ...


> Folgt wie schon gesagt, aus der Definition, die wir auch in
> der Vorlesung hatten,
> dass n über k =
>  n!/k!(n-1)! WENN k [mm]\in[/mm]{0,1 ... n}
>  0 sonst.

Diese Definition halte ich etwas eingeschränkt, aber für die Handhabung ist das völlig ok.

> da aber mein k nicht in {0,1 ... n} liegt, ist das Ergebnis Null.

[ok]

> Trotzdem vielen Dank für die Antworten...

;-) Gern geschehen ...

Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]