matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesBinomial Teilbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis-Sonstiges" - Binomial Teilbarkeit
Binomial Teilbarkeit < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomial Teilbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 So 26.09.2010
Autor: kushkush

Aufgabe
Es soll gezeigt werden, dass eine Primzahl $z$ immer Teiler des Binomialkoeffizienten [mm] $\vektor{z \\ m}$ [/mm] ist, wobei $z$ und $m$ [mm] $\in \IN$ [/mm] und $m<z$.

Falls $m<z$ dann bleibt ja immer mindestens der höchste Teil im Nenner, also m, bestehen. Schlimmstenfalls hat man dann nur noch m oben und der Rest kürzt sich weg.

Das reicht jetzt aber nicht als Beweis denke ich. Wie gehe ich weiter vor?


Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

        
Bezug
Binomial Teilbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 So 26.09.2010
Autor: T_sleeper

Hallo,

> Es soll gezeigt werden, dass eine Primzahl [mm]z[/mm] immer Teiler
> des Binomialkoeffizienten [mm]\vektor{z \\ m}[/mm] ist, wobei [mm]z[/mm] und
> [mm]m[/mm] [mm]\in \IN[/mm] und [mm]m
>  Falls [mm]m
> Teil im Nenner, also m, bestehen. Schlimmstenfalls hat man
> dann nur noch m oben und der Rest kürzt sich weg.
>

Ich bin mir nicht ganz sicher, ob ich verstehe, was du eigtl. sagen willst.
Wieso bleibt immer m im Nenner?

> Das reicht jetzt aber nicht als Beweis denke ich. Wie gehe
> ich weiter vor?
>  

Schreib mal auf, was der Binomialkoeffizient eigtl. bedeutet. [mm] \binom{z}{m}=... [/mm] . Dann wird dir sofort klar sein, dass z den Zähler teilt. Nun stehen im Nenner aber nur Fakultäten, die <z sind. Und z ist eine Primzahl, also...
Dann bist du fertig.

>
> Ich habe diese Frage in keinem anderen Forum gestellt und
> bin für jede Antwort dankbar.

Grüße

Bezug
                
Bezug
Binomial Teilbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:55 So 26.09.2010
Autor: kushkush

Hallo t_sleeper,


habe mich vertippt, ich habe gemeint, dass immer mindestens z im Zähler übrig bleibt!  

Die Frage war halt die, ob das jetzt als Beweis reicht bzw. wie ich das formulieren soll.

Werds erstmal mit abakus' Link versuchen, danke euch.

Bezug
                        
Bezug
Binomial Teilbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 So 26.09.2010
Autor: T_sleeper

Hallo,
> Hallo t_sleeper,
>
>
> habe mich vertippt, ich habe gemeint, dass immer mindestens
> z im Zähler übrig bleibt!

Ja so ist es. z steht immer im Zähler, doch aber nie im Nenner, weil doch die Fakultäten dort alle kleiner sind als z!.
Jetzt bist du in der Tat fertig, weil du gezeigt hast, dass z nur den Zähler teilt, aber nicht den Nenner, also teilt z den Binomialkoeffizienten.
  

>
> Die Frage war halt die, ob das jetzt als Beweis reicht bzw.
> wie ich das formulieren soll.
>
> Werds erstmal mit abakus' Link versuchen, danke euch.  

Grüße

Bezug
        
Bezug
Binomial Teilbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 So 26.09.2010
Autor: abakus


> Es soll gezeigt werden, dass eine Primzahl [mm]z[/mm] immer Teiler
> des Binomialkoeffizienten [mm]\vektor{z \\ m}[/mm] ist, wobei [mm]z[/mm] und
> [mm]m[/mm] [mm]\in \IN[/mm] und [mm]m
>  Falls [mm]m
> Teil im Nenner, also m, bestehen. Schlimmstenfalls hat man
> dann nur noch m oben und der Rest kürzt sich weg.
>
> Das reicht jetzt aber nicht als Beweis denke ich. Wie gehe
> ich weiter vor?

Ein Beweis sollte indirekt möglich sein. Eine Idee dazu gibt es hier:
http://de.wikibooks.org/wiki/Primzahlen:_I._Kapitel:_Die_Eigenschaften_der_Primzahl

Gruß Abakus

>  
>
> Ich habe diese Frage in keinem anderen Forum gestellt und
> bin für jede Antwort dankbar.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]