matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBinom.Lehrsatz, Pascal. Dreiec
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Binom.Lehrsatz, Pascal. Dreiec
Binom.Lehrsatz, Pascal. Dreiec < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binom.Lehrsatz, Pascal. Dreiec: Beweis
Status: (Frage) beantwortet Status 
Datum: 21:23 Do 28.04.2005
Autor: mimi94

Ich habe diese Frage in keinem anderen Forum gestellt.

Also ich habe Probleme bei vollgenden 2 Beweisen:
a)n element natürl. Zahlen
[mm] \summe_{k=0}^{n}(-1)^{k}\vektor{n \\ k}=0 [/mm]

Ich käme bei vollständiger Induktion schon bei n=0 auf =1 dies entspricht aber nicht der =0, muss ich anders vorgehen oder ist dies Ausage falsch.

b)n,m element natürl. Zahlen
[mm] \summe_{j=o}^{n}\vektor{m+j \\ j}=\vektor{m+n+1 \\ n} [/mm]
Dies soll was mit dem Pascalschen Dreieck zu tun haben.
Ich hab es mit umstellen versucht, aber auch mit dem n nach unten zu bekommen, naja es hat halt nicht geklappt.
Vielleicht kann mir jemand den Anfang geben.

Danke

        
Bezug
Binom.Lehrsatz, Pascal. Dreiec: Natürliche Zahlen
Status: (Antwort) fertig Status 
Datum: 21:41 Do 28.04.2005
Autor: MathePower

Hallo,

>  a)n element natürl. Zahlen
>  [mm]\summe_{k=0}^{n}(-1)^{k}\vektor{n \\ k}=0[/mm]
>  
> Ich käme bei vollständiger Induktion schon bei n=0 auf =1
> dies entspricht aber nicht der =0, muss ich anders vorgehen
> oder ist dies Ausage falsch.

Die obige Aussage gilt für n > 0.

[mm]\left( {1\; + \;\left( { - 1} \right)} \right)^n \; = \;\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)\;\left( { - 1} \right)^k \; = \;0\;\left( {n\; > \;0} \right)} [/mm]

>  
> b)n,m element natürl. Zahlen
>   [mm]\summe_{j=o}^{n}\vektor{m+j \\ j}=\vektor{m+n+1 \\ n}[/mm]
>  
> Dies soll was mit dem Pascalschen Dreieck zu tun haben.
>  Ich hab es mit umstellen versucht, aber auch mit dem n
> nach unten zu bekommen, naja es hat halt nicht geklappt.
>  Vielleicht kann mir jemand den Anfang geben.

Da fällt mir im Momemnt nichts passendes ein.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]