matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBin. Satz / geom. Summenformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Bin. Satz / geom. Summenformel
Bin. Satz / geom. Summenformel < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bin. Satz / geom. Summenformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Do 11.03.2010
Autor: el_grecco

Aufgabe
Berechnen Sie mit Hilfe des binomischen Satzes (und der geometrischen Summenformel) die folgenden Summen.

Hallo.

Ich erkenne nicht, aus welchem Grund bei der ersten Aufgabe der Exponent nicht angepasst wird und bei der zweiten Aufgabe aber schon, schließlich wird nach meinem Verständnis bei beiden Aufgaben eine "Summation bis n+1 gewünscht".
Welcher Gedanke steckt dahinter und gibt es eine Regel, die in solchen  Fällen beachtet werden muss?

Erste Aufgabe:

[mm] \summe_{k=0}^{n} \vektor{n+1 \\ k}2^{k+1} [/mm]

Summation bis
= [mm] \summe_{k=0}^{n} \vektor{n+1 \\ k}2^{k+1} [/mm] + [mm] 2^{n+2} [/mm] - [mm] 2^{n+2} [/mm]
n+1 erwünscht

= [mm] \summe_{k=0}^{n+1} \vektor{n+1 \\ k}*2*2^{k} [/mm] - [mm] 2^{n+2} [/mm]

= [mm] 2*\summe_{k=0}^{n+1} \vektor{n+1 \\ k}*2^{k}*1^{(n+1)-k} [/mm] - [mm] 2^{n+2} [/mm]

= [mm] 2*(2+1)^{n+1} [/mm] - [mm] 2^{n+2} [/mm] = [mm] 2*3^{n+1} [/mm] - [mm] 2^{n+2} [/mm]

= [mm] 2*(3^{n+1} [/mm] - [mm] 2^{n+1}) [/mm]


Zweite Aufgabe:

[mm] \summe_{k=0}^{n} \vektor{n + 1 \\ k}x^{n-k} [/mm] = [mm] \summe_{k=0}^{n} \vektor{n + 1 \\ k}x^{n-k} [/mm] + [mm] \bruch{1}{x} [/mm] - [mm] \bruch{1}{x} [/mm]

Exponent
= [mm] \summe_{k=0}^{n+1} \vektor{n + 1 \\ k}x^{(n+1)-k-1} [/mm] - [mm] \bruch{1}{x} [/mm]
anpassen

= [mm] \summe_{k=0}^{n+1} \vektor{n + 1 \\ k}x^{(n+1)-k}*\bruch{1}{x} [/mm] - [mm] \bruch{1}{x} [/mm]

= [mm] \bruch{1}{x}*\summe_{k=0}^{n+1} \vektor{n + 1 \\ k}x^{(n+1)-k}*1^{k} [/mm] - [mm] \bruch{1}{x} [/mm]

= [mm] \bruch{1}{x}*(1+x)^{n+1} [/mm] - [mm] \bruch{1}{x} [/mm]

= [mm] \bruch{1}{x}[(1 [/mm] + [mm] x)^{n+1} [/mm] - 1]


Vielen Dank.

Gruß
el_grecco


        
Bezug
Bin. Satz / geom. Summenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Do 11.03.2010
Autor: Teufel

Hi!

Guck dir mal den binomischen Lehrsatz nochmal genauer an.

[mm] (a+b)^n=\summe_{k=0}^{n}\vektor{n \\ k}a^kb^{n-k} [/mm]

Ein Faktor hat also nur einen Exponenten mit dem Laufindex (k) drinnen und der andere n-k.

Und in deiner 1. Aufgabe ist sozusagen der Faktor da, der nur k im Exponenten hat. In der 2. Aufgabe steckt der andere Faktor drinnen, der mit n-k. Daher passiert man da etwas anders an. Man nimmt also das, was ohnehin schon so da steht und ergänzt es etwas. Man muss eben nur wissen wo man hin will.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]