matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBilinearformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Bilinearformen
Bilinearformen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearformen: Isomorphismus?
Status: (Frage) beantwortet Status 
Datum: 09:50 Fr 09.09.2005
Autor: Britta82

Hi,

ist die Abbildung von [mm] \PHI \to G_{ \{V}} [/mm] eigentlich ein Isomorphismus?

Die Abbildung von f [mm] \to [/mm] D (D die Darstellungsmatrix von f) ist ja ein Isomorphismus.

Ist der Raum der Bilinearformen eigentlich ein Vektorraum?

Danke

Britta

        
Bezug
Bilinearformen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Fr 09.09.2005
Autor: holy_diver_80

Hallo Britta,

Leider ist Dir ein Syntaxfehler mit [mm] \LaTeX [/mm] unterlaufen. Mir ist nicht ganz klar, was Du meinst. Könntest Du die Frage bitte noch einmal ausführlich posten (und dabei die Vorschau benutzen)?

Liebe Grüße,
Holy Diver

Bezug
        
Bezug
Bilinearformen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Fr 09.09.2005
Autor: Julius

Hallo Britta!

Ja, das ist richtig: Die Menge der Bilinearformen auf einem konkreten endlichdimensionalen Vektorraum bildet einen Vektorraum, und die Menge der symmetrischen Bilinearformen bildet einen Untervektorraum davon. Nicht allerdings die Menge der Skalarprodukte, das ist nur ein Kegel.

Bei Wahl einer festen Basis wird in der Tat durch die Abbildung, die jeder symmetrischen Bilinearform ihre Gramschen Matrix bezüglich der festen Basis zuordnet, ein Isomorphismus zwischen dem Vektorraum der symmetrischen Bilinearformen auf einem $n$-dimensionalen [mm] $\IR$-Vektorraum [/mm] und dem Vektorraum der symmetrischen quadratischen $n [mm] \times [/mm] n$-Matrizen gegeben.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]