matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBilinearformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Bilinearformen
Bilinearformen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 30.07.2008
Autor: natea

Aufgabe
...Diese Wortwahl suggeriert, dass eine Bilinearform eine zweifache Linearform ist, und das ist im folgenden Sinne zu verstehen: Wenn wir ein Element  w [mm] \in [/mm] V auswählen und die Abbildung [mm] r_w [/mm] : V [mm] \to [/mm] K betrachten, die jedem v [mm] \in [/mm] V das Element [mm] r_w(v) [/mm] = [mm] \beta [/mm] (v, w) zuordnet, dann besagt die Bedingung (i) der Definition  4.1.1 gerade, dass [mm] r_w [/mm] eine Linearform ist.....

Hallo,

vielleicht kann mir jemand helfen.

Das oben beschriebene ist eine Textstelle aus meinem Skript, in dem es um Bilinearformen geht. Meine Frage dazu ist jetzt, was ich  unter der Abbildung r mit dem tiefgestellten w zu verstehen habe. Ich weiß auch nicht so recht wo ich das nachschlagen könnte. Deshalb hoffe ich das mir hier jemand weiterhelfen kann?!

Vielen Dank schon mal und viele Grüße!

        
Bezug
Bilinearformen: Erläuterung
Status: (Antwort) fertig Status 
Datum: 22:22 Mi 30.07.2008
Autor: uliweil

Hallo natea,

der Schreiber des Scriptes hat einfach versucht zu erläutern, was die Definition einer Bilinearform bedeutet, nämlich, dass [mm] \beta(v,w) [/mm] in beiden Argumenten eine Linearform ist, wenn man das jeweils andere festhält. Also: nehmen wir w als beliebig aber fest an, dann definiert er [mm] r_{w}(v) [/mm] als Abbildung einer Veränderlichen v, die dann eine Linearform ist, weil [mm] \beta(v,.) [/mm] in der ersten Variablen linear ist. Das tiefgestellte w erinnert daran, dass [mm] r_{w} [/mm] für jedes w eine letzlich andere Linearform darstellt.
Genauso könnte man die erste Variable v festnageln und hätte dann eine Linearform über die zweite Variable w.

Gruß
Uli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]