matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBilinearform bezügl. Basis  
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Bilinearform bezügl. Basis
Bilinearform bezügl. Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform bezügl. Basis : Bestimmung, rausfinden in R3
Status: (Frage) beantwortet Status 
Datum: 18:23 So 05.06.2005
Autor: mimi94

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo!
Ich habe Probleme bei verschiedenen Aufgaben, bei denen man die Bilinear Form bestimmen soll.
Ich habe schon Problem e bei den Ansätzen, es wäre toll, wenn mir da jemand helfen könnte und mir bei diesen beiden Aufgaben das Verfahren erklärt, so dass ich dies noch an anderen Aufgaben nachrechnen kann.
1.)
Sei [mm] \beta [/mm]  : [mm] \IR^{3} [/mm] × [mm] \IR^{3} \to \IR [/mm] die Bilinearform
[mm] \beta((a, [/mm] b, c), (d, e, f))=ad + 2bf + cf + 2ce − ae + be − bd.
Bestimme die Matrix [mm] [\beta]_{B} [/mm] bezüglich der geordneten Standardbasis B von [mm] \IR^{3} [/mm] .
Die Standardbasis ist doch wie immer :(1,0,0);(0,1,0);(0,0,1)?

2.)
Sei [mm] \beta [/mm]  : [mm] \IR^{3} [/mm] × [mm] \IR^{3} \to \IR [/mm] die Bilinearform
[mm] \beta [/mm] (x, y) = [mm] xAy^{t} [/mm] mit A [mm] =\pmat{ 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 } [/mm]
Bestimme [mm] [\beta]_{B} [/mm] bezüglich der geordneten Basis B =((1, 0, 0), (0, 1, 1), (1, 0, 1))
Diese AUfgabe finde ich noch besonders schwer, da hier nicht mit der Standardbasis gerechnet wird.
Ich danke schonmal für jede Hilfe!!!



        
Bezug
Bilinearform bezügl. Basis : Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Mo 06.06.2005
Autor: Julius

Hall mimi!

Es muss ja gelten:

[mm] $\beta((a,b,c),(d,e,f)) [/mm] = [mm] \pmat{a & b & c} \cdot [\beta]_B \cdot \pmat{d \\ e \\ f}$. [/mm]

Daraus folgt offenbar:

[mm] $[\beta]_B [/mm] = [mm] \pmat{ 1 & -1 & 0 \\ -1 & 1 & 2 \\ 0 & 2 & 1}$. [/mm]

> 2.)
>  Sei [mm]\beta[/mm]  : [mm]\IR^{3}[/mm] × [mm]\IR^{3} \to \IR[/mm] die Bilinearform
>  [mm]\beta[/mm] (x, y) = [mm]xAy^{t}[/mm] mit A [mm]=\pmat{ 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 }[/mm]
>  
> Bestimme [mm][\beta]_{B}[/mm] bezüglich der geordneten Basis B =((1,
> 0, 0), (0, 1, 1), (1, 0, 1))

Es gilt:

[mm] $[beta]_B [/mm] = [mm] \pmat{ \beta((1,0,0),(1,0,0)) & \beta((1,0,0),(0,1,1)) & \beta((1,0,0),(1,0,1)) \\ \beta((0,1,1),(1,0,0)) & \beta((0,1,1),(0,1,1)) & \beta((1,0,0),(1,0,1)) \\ \beta((1,0,1),(1,0,0)) & \beta((1,0,1),(0,1,1)) & \beta((1,0,1),(1,0,1)) }$. [/mm]

Rechne die Einträge nun einfach unter Beachtung der Bilinearität von [mm] $\beta$ [/mm] aus. :-)

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]