matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBilinearform,Linear Unabhängig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Bilinearform,Linear Unabhängig
Bilinearform,Linear Unabhängig < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform,Linear Unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:47 Mi 05.01.2005
Autor: Tito

Hallo Matheraum.

Ich habe eine Aufgabe, bei der mir einfach nichts einfällt. Wäre über jede Idee oder Vorschläge dankbar.
Meine Aufgabe lautet:

Sei [mm] \IK [/mm] ein Körper und V ein endlichdimensionaler [mm] \IK-Vektorraum, [/mm] sowie [mm] \beta:V \times V\to\IK [/mm] eine Bilinearform. Seien Vektoren [mm] v_1,...,v_m\inV [/mm] gegeben.
Zeige: Wenn die Matrix [mm] (\beta(v_i,v_j))_{ij} [/mm] invertierbar ist, dann sind [mm] v_1,...,v_m [/mm] linear unabhängig.

mfG
Tito

        
Bezug
Bilinearform,Linear Unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Mi 05.01.2005
Autor: Lottchen

Hallo,
Du musst den Beweis indirekt führen. Nehme an, die Vektoren v1 bis vm sind linear abhängig. O.B.d. A. lässt sich vm als Linearkombination von den anderen darstellen. Nun kannst du die Matrix  bilden und wirst dann feststellen, dass die Determinate 0 ist,also das ganze nicht invertierbar ist . Dabei musst du  dir anschauen, wie die Matrix definiert ist und das es sich bei den Einträgen  um eine Bilinearform handelt, wenn du noch Fragen hast, ich helfe dann gerne noch weiter, du musst die Aufgaben ja jetzt erst Freitag abgeben dabei.
Lottchen

Bezug
                
Bezug
Bilinearform,Linear Unabhängig: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 Mi 05.01.2005
Autor: Tito

Danke Lottchen für den Hinweiß habs gerade hinbekommen, wr eigentlich gar nicht so schwer.

Gruß Tito

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]