matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteBilinarformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Bilinarformen
Bilinarformen < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinarformen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:58 Sa 01.09.2007
Autor: pusteblume86

Und nochmal;)

Also ich habe einen K-Vektorraum V mit Basis [mm] v_1,v_2,......,v_n [/mm]
und eine Koordinatenabbildung f:V-> [mm] V_n(K) [/mm]

dann soll für jede Matrix B [mm] \in M_n(K) [/mm] gelten:   <u,w> = [mm] f(u)^t [/mm] B f(w)

So: Gilt das nur für das Standrdskalarprodukt?(Dann kann man es sich jedenfalls gut klarmachen)

Nun geht es aber um: B [mm] \in M_n(K) [/mm] invertierbar <=> <u,w> nicht-degeneriert

Wie lässt sich das beweisen?

Ich habe mir fogendes überlegt: "=>"  

Nicht-degeneriert heißt ja, dass kein w [mm] \in [/mm] V existiert , sodass   <u,w> = 0 für alle v [mm] \in [/mm] V.
Das heißt also ja, dass dann [mm] f(u)^t [/mm] B f(w) [mm] \not= [/mm] 0 sein muss.

Sei also <u,w> nicht Nicht-Degeneriert=> <u,w> =0 => [mm] f(u)^t [/mm] B f(w)  =0
=> [mm] f(u)^t [/mm] B f(w) [mm] f^{-1}(w) [/mm] = [mm] 0*f^{-1}=>f(u)^t [/mm] B = [mm] (Nullvektor)^t=> [f^{-1}(u)]^t [/mm] B = [mm] [f^{-1}(u)]^t *(Nullvektor)^t [/mm] => B= Nullmatrix => nicht invertierbar

Kann man dann daraus schließen, dass wenn <u,w> Nicht-Degeneriert ist, dass es dann invertierbar ist?


Kann mir jemand helfen?

Schönen Sonntag wünsch ich euch fleißigen Helfern..

Lg Sandra


        
Bezug
Bilinarformen: Beweis
Status: (Antwort) fertig Status 
Datum: 21:28 So 02.09.2007
Autor: subclasser

Hallo, Sandra!
  

> Also ich habe einen K-Vektorraum V mit Basis
> [mm]v_1,v_2,......,v_n[/mm]
>  und eine Koordinatenabbildung f:V-> [mm]V_n(K)[/mm]

>  
> dann soll für jede Matrix B [mm]\in M_n(K)[/mm] gelten:   <u,w> =
> [mm]f(u)^t[/mm] B f(w)
>  
> So: Gilt das nur für das Standrdskalarprodukt?(Dann kann
> man es sich jedenfalls gut klarmachen)

Diese Frage verstehe ich leider nicht. Im Allgemeinen handelt es sich bei dem obigen um gar kein Skalarprodukt, sondern nur um eine Bilinearform. Und diese wird einfach wie oben definiert.
Ansonsten einfach noch einmal die Frage (für mich) etwas verständlicher stellen :-)

> Nun geht es aber um: B [mm]\in M_n(K)[/mm] invertierbar <=> <u,w>
> nicht-degeneriert

> Ich habe mir fogendes überlegt: "=>"    
> Sei also <u,w> nicht Nicht-Degeneriert => (...) => nicht invertierbar

Dein Ansatz sieht mir sehr verdächtig aus. Du "multiplizierst" beide Seiten der Gleichungen mit einem Element aus dem Vektorraum V, auf der rechten Seite der Gleichung handelt es sich um eine Multiplikation eines Skalars mit einem Vektor und auf linken Seite um die Verknüpfung zweier Funktionen!
Außerdem wird im nächsten Schritt auf der rechten Gleichungsseite aus einem Skalar ein Vektor :-(

> Kann man dann daraus schließen, dass wenn <u,w>
> Nicht-Degeneriert ist, dass es dann invertierbar ist?

Wir nehmen einmal an, dass dein Beweis richtig ist. Dann hättest du genau die andere Richtung gezeigt, nämlich, dass aus invertierbar Nicht-Degeniert folgt.
Machen wir dazu mal ein Beispiel. Wir wissen, dass wenn es regnet, die Straße nass ist, also wissen wir auch, dass wenn die Straße nicht naß ist, dass es dann nicht geregnet hat. Denn hätte es geregnet, dann wäre auch die Straße nass. Sie ist aber nicht nass. Mach' dir klar, dass die Aussagen äquivaltent sind.
Wir wissen aber noch lange nicht, dass wenn es nicht regnet, die Straße nicht nass ist. Ich könnte ja auf die Idee kommen, die Straße zu gießen :-)

Ich will dich jetzt aber nicht im Regen oder auf nassen Straßen stehen lassen, sondern dir meine Beweisidee zeigen. Falls etwas unklar oder falsch ist, einfach nachhaken :-)

Also sei die Bilinearform wie oben definiert. Sei also $B [mm] \in [/mm] M(n [mm] \times [/mm] n, K)$ invertierbar. Wir wollen zeigen, dass die BF nicht degeneriert ist. Sei $w [mm] \in [/mm] V$. Es sei $<u,w> = 0 [mm] \quad \forall [/mm] u [mm] \in [/mm] U$. Wir betrachten
[mm] $$ [mm] $$ und so weiter. Wir erhalten also insgesamt das Gleichungssystem
[mm] $$\begin{pmatrix}b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} [/mm] * f(w) = 0$$
Da $B$ laut Voraussetzung aber invertierbar ist, enthält der Kern nur den Nullvektor und es gilt $f(w) = 0 [mm] \gdw [/mm] w = 0$. Somit ist diese Richtung gezeigt.

Nun zur Rückrichtung. Sei die BF nicht degeniert. Wir wollen zeigen, dass $B$ invertierbar ist. Es reicht zu zeigen, dass der Kern nur den Nullvektor enthält. Sei also $w [mm] \ne [/mm] 0$. Dann [mm] $\exists [/mm] u [mm] \ne [/mm] 0$, sodass [mm] $f(u)^t [/mm] * B * f(w) = <u, w> [mm] \ne [/mm] 0$. Also gilt erst recht $B * f(w) [mm] \ne [/mm] 0$ und damit $f(w) [mm] \notin [/mm] Kern(B)$. Da $f$ bijektiv ist, ist $B$ somit invertierbar.

> Schönen Sonntag wünsch ich euch fleißigen Helfern..

Danke! Dir auch noch eine schönen Abend.

Gruß,

Stephan

Bezug
                
Bezug
Bilinarformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Mo 03.09.2007
Autor: pusteblume86


danke für die ausfürhliche Antwort!!

Hier habe ich noch eine Frage: Wie kom mt man zu: $ [mm]
Denn das [mm] e_1 [/mm] muss ja dann hier [mm] f(v_1)^t [/mm] sein, wobei f diese Koordinatenabbildung ist..Aber da verstehe ich den Zusammenhang nicht;(


Lg Sandra

Bezug
                        
Bezug
Bilinarformen: Erklärung
Status: (Antwort) fertig Status 
Datum: 13:53 Di 04.09.2007
Autor: subclasser

Hallo!

[mm] $e_1$ [/mm] ist bei mir ein Zeilenvektor, das hätte ich vielleicht dazuschreiben sollen. Ich mache diesen Schritt noch einmal ein weniger ausführlicher :-)
Sei [mm] $(v_1, \ldots, v_n)$ [/mm] wieder unsere Basis von $V$. Dann ist doch $f: V [mm] \to K^n$ [/mm] folgendendermaßen defniert: $v = [mm] \sum_{i=1}^{n} \lambda_i v_i \mapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$. [/mm] Dementsprechend gilt für [mm] $v_1 [/mm] = 1 * [mm] v_1 [/mm] + 0 * [mm] v_2 [/mm] + [mm] \ldots [/mm] + 0 * [mm] v_n$ $f(v_1)^t [/mm] = [mm] \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^t$. [/mm] Anschließend habe ich nur noch die Vektor-Matrixmultiplikation ausgeführt.

Ich hoffe, die Schritte sind dir jetzt etwas klarer geworden.

Gruß!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]