matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBildungsgesetz von Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Bildungsgesetz von Folgen
Bildungsgesetz von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bildungsgesetz von Folgen: Wie am einfachsten bestimmen?
Status: (Frage) beantwortet Status 
Datum: 13:56 Mo 23.11.2009
Autor: Inselinc

Hi , also mit den Reihen und Folgen bin ich an ein ziemlich großes ? gestoßen ...... und zwar hat jemand einen tipp wie man ein Bildungsgesetz am einfachsten bestimmen kann??

zb man hat folgende 5 glieder:
22,29,36,43,50....

jetzt könnte man oder eher ich, mit viel viel ausprobieren dass ganze zwar lösen aber da gehen ja dann mindenstenz 20 minuten drauf und das ist ja erst aufgabe a), sprich die einfachste ....

von daher hoffe ich wie bei meiner letzten frage auf eine richtig gute antwort, die mir auch bei dieser Unklarheit helfen wird :D

Grüße
insel.inc.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bildungsgesetz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Mo 23.11.2009
Autor: Teufel

Hi

Das sind (höchstwahrscheinlich) Folgenglieder einer arithmetischen Folge. Arithmetische Folgen haben die Form [mm] a_n=a_1+(n-1)d, [/mm] wobei [mm] a_1 [/mm] das 1. Folgenglied ist und d der Abstand zwischen 2 Folgengliedern.

Jetzt musst du bei dir nur schauen, was [mm] a_0 [/mm] ist (einfach abzulesen) und was d ist (einfach auszurechnen).

Ansonsten kannst du es auch so machen:
[mm] a_1=22 [/mm]
[mm] a_2=29=a_1+7 [/mm]
[mm] a_3=36=a_2+7=a_1+2*7 [/mm]
[mm] a_4=43=a_3+7=a_1+3*7 [/mm]
...
[mm] a_n=? [/mm]

Mit der Variante kommt man auch unter anderem auf die Formel für arithmetische Folgen.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]