matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBildungsgesetz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Bildungsgesetz
Bildungsgesetz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bildungsgesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Sa 15.02.2014
Autor: elektroalgebra93

Aufgabe
Bildungsgesetz (fn) und grenzwert der Zahlenfolge bestimmen:
[mm] \bruch{1}{2}, \bruch{2}{11}, \bruch{5}{26}, \bruch{10}{47}, \bruch{17}{74}, \bruch{26}{107} [/mm]

Hey,

Wollte fragen op das folgende Ergebnis richtig wäre:

-Bildungsgesetz:
[mm] f(n)=\bruch{n^2 -n -1}{3n^2 -1} [/mm]

-Grenzwert:
[mm] \limes_{n\rightarrow\infty} [/mm] f(n) = [mm] \bruch{1}{3} [/mm]

Danke,
lG

        
Bezug
Bildungsgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Sa 15.02.2014
Autor: abakus


> Bildungsgesetz (fn) und grenzwert der Zahlenfolge
> bestimmen:
> [mm]\bruch{1}{2}, \bruch{2}{11}, \bruch{5}{26}, \bruch{10}{47}, \bruch{17}{74}, \bruch{26}{107}[/mm]

>

> Hey,

>

> Wollte fragen op das folgende Ergebnis richtig wäre:

>

> -Bildungsgesetz:
> [mm]f(n)=\bruch{n^2 -n -1}{3n^2 -1}[/mm]

Bereits beim zweiten Folgenglied stimmt deine Formel nicht.
Die Zähler sind jeweils Nachfolger einer Quadratzahl. Die Nenner stimmen.
>

> -Grenzwert:
> [mm]\limes_{n\rightarrow\infty}[/mm] f(n) = [mm]\bruch{1}{3}[/mm]

Das ist richtig.
Gruß Abakus
>

> Danke,
> lG

Bezug
                
Bezug
Bildungsgesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Sa 15.02.2014
Autor: elektroalgebra93

Hm, irgendwie leuchtet mir mein Fehler nicht ein..
Hier mein vorgehen für den Zähler:

Folge:     1 2 5 10 17 26
Abstand:   1 3 5  7   9  
Abstand:     2 2  2   2
-> [mm] n^2 [/mm]

Hilfsfolge [mm] (n^2) [/mm] :  1 4 9 16 25 36
Folge - Hilfsfolge:   0 -2 -4 -6 -8 -10
ABstand:               -2 -2 -2 -2 -2
-> -n

Hilfsfolge(-n) :   -1 -2 -3 -4 -5 -6
Abstand:              -1 -1 -1 -1 -1
-> -1


--> [mm] n^2 [/mm] -n -1


Bezug
                        
Bezug
Bildungsgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Sa 15.02.2014
Autor: Sax

Hi,

> Hm, irgendwie leuchtet mir mein Fehler nicht ein..
>  Hier mein vorgehen für den Zähler:
>  
> Folge:     1 2 5 10 17 26
> Abstand:   1 3 5  7   9  
> Abstand:     2 2  2   2
> -> [mm]n^2[/mm]
>
> Hilfsfolge [mm](n^2)[/mm] :  1 4 9 16 25 36
> Folge - Hilfsfolge:   0 -2 -4 -6 -8 -10
> ABstand:               -2 -2 -2 -2 -2
> -> -n

Eben wegen dieser -2 als Abstand ist der lineare Term in f(n) gleich -2n und nicht -n. (Nur im quadratischen Term ist der Koeffizient die Hälfte der zweiten Differenzen.)

Gruß Sax.

Bezug
                                
Bezug
Bildungsgesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 Sa 15.02.2014
Autor: elektroalgebra93

Ahja..Bekomme dann [mm] n^2 [/mm] -2n -2 raus, ist aber immer noch falsch! Ich blicke nicht durch wo mein Fehler ist

Bezug
                                        
Bezug
Bildungsgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 So 16.02.2014
Autor: DieAcht

Hi,

      [mm] a_n:=\frac{(n-1)^2+1}{3n^2-1} [/mm]

DieAcht
      

Bezug
                                                
Bezug
Bildungsgesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Mo 17.02.2014
Autor: elektroalgebra93

hey

Wie kommst du auf die [mm] (n-1)^1 [/mm] + 1 ?
Ich komm da nicht drauf, so wie ich oben mein Lösungsweg geschrieben habe...


lG

Bezug
                                                        
Bezug
Bildungsgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Mo 17.02.2014
Autor: DieAcht

Hallo,


> hey
>  
> Wie kommst du auf die [mm](n-1)^1[/mm] + 1 ?

Das ist auch falsch!

      [mm] a_n:=\frac{(n-1)^2+1}{3n^2-1} [/mm]

>  Ich komm da nicht drauf, so wie ich oben mein Lösungsweg geschrieben habe...

Deinen Fehler dazu hat die Sax schon hier berichtigt.

Den Zähler habe ich wie folgt erhalten:

[mm] $0^2=0$ [/mm]
[mm] $1^2=1$ [/mm]
[mm] $2^2=4$ [/mm]
[mm] $3^2=9$ [/mm]
[mm] $4^2=16$ [/mm]
[mm] $5^2=25$ [/mm]
...

Jetzt addieren wir eine Eins dazu:

[mm] $0^2+1=1$ [/mm]
[mm] $1^2+1=2$ [/mm]
[mm] $2^2+1=5$ [/mm]
[mm] $3^2+1=10$ [/mm]
[mm] $4^2+1=17$ [/mm]
[mm] $5^2+1=26$ [/mm]
...

Hier fängt aber unsere Folge bei $n=0$ an, aber es ist immer
schöner wenn eine Folge bei $n=1$ anfängt, deshalb folgendes:

[mm] $(1-1)^2+1=1$ [/mm]
[mm] $(2-1)^2+1=2$ [/mm]
[mm] $(3-1)^2+1=5$ [/mm]
[mm] $(4-1)^2+1=10$ [/mm]
[mm] $(5-1)^2+1=17$ [/mm]
[mm] $(6-1)^2+1=26$ [/mm]
...

[mm] \Rightarrow a_n:=\frac{(n-1)^2+1}{3n^2-1} [/mm] mit [mm] n\in\IN. [/mm]


Gruß
DieAcht

Bezug
                                        
Bezug
Bildungsgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Di 18.02.2014
Autor: Sax

Hi,

ich nehme an, dass du nicht nach der Lösung fragst, sondern nach dem Fehler in deiner Methode. Deshalb konnten dir die obigen Antworten nicht helfen, deshalb die Nachfragen.

Ich erkläre dir die von dir bevorzugte Methode am besten anhand eines Beispiels.
Lass uns dazu diese Folge betrachten, zu der wir den Bildungsterm suchen :

n             1    2    3    4    5    6
  
a(n)          2   22   74   170  322  542
erste Diff.     20  52   96   152  220
zweite Diff.      32   44   56   68
dritte Diff.        12   12   12    

Du siehst hier, dass die dritten Differenzen konstant sind und kannst daraus schließen, dass das Bildungsgesetz für a(n) mit [mm] a*n^3 [/mm] beginnt (und also letztlich [mm] a*n^3+b*n^2+c*n+d [/mm] sein wird). Das entspricht der Tatsache, dass die dritte Ableitung einer Funktion [mm] a*x^3 [/mm] konstant ist und den Wert 6a hat. Unsere dritte Differenz hat den Wert 12 und daher ist unser a gleich 12/6=2.
Du bildest dann die Hilfsfolge [mm] h_1(n)=2n^3 [/mm] und die Differenz aus a(n) und [mm] h_1(n): \;b(n)=a(n)-h_1(n)=a(n)-2n^3 [/mm]

n             1    2    3    4    5    6    
  
b(n)          0    6   20   42   72   110
erste Diff.     6    14  22   30    38
zweite Diff.      8    8    8    8

Du siehst hier, dass die zweiten Differenzen konstant sind und kannst daraus schließen, dass das Bildungsgesetz für b(n) mit [mm] b*n^2 [/mm] beginnt. Das entspricht der Tatsache, dass die zweite Ableitung einer Funktion [mm] b*x^2 [/mm] konstant ist und den Wert 2b hat. Unsere zweite Differenz hat den Wert 8 und daher ist unser b gleich 8/2=4.

Du bildest dann die Hilfsfolge [mm] h_2(n)=4n^2 [/mm] und die Differenz aus b(n) und [mm] h_2(n): \, c(n)=b(n)-h_2(n)=a(n)-2n^3-4n^2 [/mm]

n             1    2    3    4    5    6    
  
c(n)         -4   -10  -16  -22  -28  -34
erste Diff.     -6   -6   -6   -6    -6

Du siehst hier, dass die ersten Differenzen konstant sind und kannst daraus schließen, dass das Bildungsgesetz für c(n) mit c*n beginnt. Das entspricht der Tatsache, dass die erste Ableitung einer Funktion c*x konstant ist und den Wert c hat. Unsere erste Differenz hat den Wert -6 und daher ist unser c gleich -6.

Du bildest dann die Hilfsfolge [mm] h_3(n)=-6n [/mm] und die Differenz aus c(n) und [mm] h_3(n): \, d(n)=c(n)-h_3(n)=a(n)-2n^3-4n^2+6n [/mm]

n             1    2    3    4    5    6    
  
d(n)          2    2    2    2    2    2

Wir brauchen jetzt keine Differenzfolge mehr zu bilden, du siehst, dass d(n)=2 ist, also [mm] a(n)-2n^3-4n^2+6n=2 [/mm] und somit ist die Aufgabe gelöst :  [mm] a(n)=2n^3+4n^2-6n+2 [/mm]

Gruß Sax.

Bezug
                                                
Bezug
Bildungsgesetz: Grosses dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 Di 18.02.2014
Autor: elektroalgebra93

Ein grosses grosses Dankeschön SAX!!
Super Erklärung, super nachvollziehbar!! Hab dein Beispiel durchgenommen und mit deinen Werten verglichen und habe dann auch direkt mein Fehler bei meiner Aufgabe bemerkt, die ich jetzt problemlos lösen konnte!

Vielen dank man! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]