matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Bild und Urbild
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Bild und Urbild
Bild und Urbild < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild und Urbild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Di 19.04.2011
Autor: noname2k

Hallo,
ich hab ein Problem bei folgender Aufgabe.
Sei $ [mm] f:\IR\to\IR, [/mm] x [mm] \mapsto x^2 [/mm] $

Jetzt soll ich dazu ein paar Mengen angeben. Hier sind meine Lösungen wenn es in [mm] \IN [/mm] ist aber ich weiß nicht wie die Schreibweise aussieht wenn es [mm] \IR [/mm] liegt.

$ im f = [mm] \{0,1,4,9,16,...\} [/mm] $

$ [mm] f^{-1}(\{9,16\})= \{-4,-3,3,4\} [/mm] $

$ [mm] f^{-1}(\{-4\})=\emptyset [/mm] $

$ [mm] f(\{-4\})=\{16\} [/mm] $

$ [mm] f^{-1}([\bruch{-1}{4},2]) [/mm] $

$ [mm] f([\bruch{-1}{4},2]) [/mm] $

Bei den letzten beiden weiß ich die Antwort nicht weil ich nicht genau weiß wie ich die eckigen Klammern zu deuten habe.
Sind die anderen Antworten soweit für [mm] \IN [/mm] schonmal korrekt?

Ich danke schonmal für Tipps.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bild und Urbild: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Di 19.04.2011
Autor: Cassipaya


> Hallo,
>  ich hab ein Problem bei folgender Aufgabe.
>  Sei [mm]f:\IR\to\IR, x \mapsto x^2[/mm]
>  
> Jetzt soll ich dazu ein paar Mengen angeben. Hier sind
> meine Lösungen wenn es in [mm]\IN[/mm] ist aber ich weiß nicht wie
> die Schreibweise aussieht wenn es [mm]\IR[/mm] liegt.

Hi, du musst dir überlegen, was mit Zahlen wie Pi oder e oder Brüchen oder -1,298378453 oder [mm]\wurzel{r}[/mm] geschieht. Deshalb stimmt das erste bei dir nicht.

>  
> [mm]im f = \{0,1,4,9,16,...\}[/mm] falsch
>  
> [mm]f^{-1}(\{9,16\})= \{-4,-3,3,4\}[/mm] richtig
>  
> [mm]f^{-1}(\{-4\})=\emptyset[/mm] richtig
>  
> [mm]f(\{-4\})=\{16\}[/mm] richtig
>  
> [mm]f^{-1}([\bruch{-1}{4},2])[/mm] das sind Intervalle und zwar geschlossene, dh 2 gehört auch noch rein und liegt nicht ausserhalb. Da kommt wieder das selbe ins Spiel wie oben, du musst dir überlegen, wohin werden alle Zahlen abgebildet, die ich aus diesem Intervall in die Funktion füttern könnte. Am besten versuchst du es zu zeichnen. Wähle einfach ein paar offensichtliche Punkte, wie Randpkte, 0 und 1 etc.
>  
> [mm]f([\bruch{-1}{4},2])[/mm]
>  
> Bei den letzten beiden weiß ich die Antwort nicht weil ich
> nicht genau weiß wie ich die eckigen Klammern zu deuten
> habe.
>  Sind die anderen Antworten soweit für [mm]\IN[/mm] schonmal
> korrekt? Die Frage ist nicht für N gestellt, deshalb irrelevant...
>  
> Ich danke schonmal für Tipps.
>  
>

Gruss Cassy

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Bild und Urbild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Di 19.04.2011
Autor: noname2k


>  >  
> > [mm]f^{-1}([\bruch{-1}{4},2])[/mm]

Die Funktion beginnt erst bei 0. Deshalb gibt es zu [mm] \bruch{-1}{4} [/mm] keinen Wert. Ist die Antwort dann nur [mm] \{4\} [/mm] oder muss ich es als Intervall angeben [mm] \{[0,4]\} [/mm] ?

>  >  
> > [mm]f([\bruch{-1}{4},2])[/mm]

Selbe Frage wie oben, [mm] \{\bruch{1}{16},4\} [/mm] oder [mm] \{[\bruch{1}{16},4]\} [/mm] oder gehe ich da noch komplett falsch ran?

>  >  
> > [mm]im f = \{0,1,4,9,16,...\}[/mm] falsch

Wurzeln, Pi etc. müssten ja auch in [mm] \IR [/mm] liegen. Meinst du damit das ich diese auch mit aufzählen muss?


Bezug
                        
Bezug
Bild und Urbild: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mi 20.04.2011
Autor: fred97

1. Für a, b [mm] \in \IR [/mm] mit a<b ist $[a,b]= [mm] \{x \in \IR: a \le x \le b \}$ [/mm]


2. [mm] $f^{-1}([ \bruch{-1}{4},2])= \{x \in \IR: x^2 \in [ \bruch{-1}{4},2] \}= \{x \in \IR: x^2 \in [0,2] \}=[-\wurzel{2},\wurzel{2}] [/mm] $

3.  $f([ [mm] \bruch{-1}{4},2])=\{x^2: x \in [ \bruch{-1}{4},2]\}= [/mm] [ [mm] \bruch{1}{16},4]$ [/mm]

Edit: tobit hat mich auf einen Fehler hingewiesen (https://matheraum.de/read?i=787112)

Es ist natürlich: $f([ [mm] \bruch{-1}{4},2])=\{x^2: x \in [ \bruch{-1}{4},2]\}= [/mm] [0,4]$

FRED

Bezug
                                
Bezug
Bild und Urbild: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 15:29 Mi 20.04.2011
Autor: tobit09

Hallo Fred,

> 3.  [mm]f([ \bruch{-1}{4},2])=\{x^2: x \in [ \bruch{-1}{4},2]\}= [ \bruch{1}{16},4][/mm]

Hier muss es $[0,4]$ statt [mm] $[\bruch{1}{16},4]$ [/mm] heißen.

Viele Grüße
Tobias

Bezug
                                
Bezug
Bild und Urbild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Mi 20.04.2011
Autor: fred97

Hallo tobit,

Du hast natürlich recht. Ich habs editiert.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]