matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBild finden/In-&Surjektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Bild finden/In-&Surjektivität
Bild finden/In-&Surjektivität < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild finden/In-&Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 Mi 21.01.2009
Autor: rebell-der-sonne

Aufgabe 1
a) Es sei [mm] \phi:\IR^2 \to \IR^2 [/mm] eine lineare Abbildung. Finden Sie das Bild einer Geraden unter [mm] \phi. [/mm]

b) Bestimmen Sie das Bild des Einheitskreises [mm] x_{1}^2+x_{2}^2=1 [/mm] unter der linearen Abbildung [mm] \phi\vektor{x_{1} \\ x_{2}} [/mm] = [mm] \vektor{3x_{1} \\ 2x_{2}}. [/mm]

Aufgabe 2
Es seien V und W zwei endlichdimensionale K-Vektorräume. Beweisen Sie:
a) [mm] dim_{K}V [/mm] < [mm] dim_{K}W \gdw [/mm] Es gibt keine lineare Abbildung [mm] \phi: [/mm] V [mm] \to [/mm] W, die surjektiv ist.
b) [mm] dim_{K}V [/mm] > [mm] dim_{K}W \gdw [/mm] Es gibt keine lineare Abbildung [mm] \phi: [/mm] V [mm] \to [/mm] W, die injektiv ist.

Hallo!

ad 1)
a) Was ist das Bild einer Geraden "unter" [mm] \phi? [/mm] Heißt das, alle Vektoren aus [mm] \IR^2, [/mm] mit denen ich mittels [mm] \phi [/mm] eine Gerade erhalte? Wie finde ich das Bild, wenn keine Abbildung gegeben ist?
b) Ich suche das Bild des Einheitskreises unter [mm] \phi. [/mm] Das heißt doch, wenn ich einsetzte, dass ich alle Vektoren finden muss, für die gilt:
[mm] (3x_{1})^2+(2x_{2})^2=1 [/mm]
Wie finde ich die?

ad 2) Von der Logik her, sind die Aussagen klar, nur, wie beweise ich die Aussagen?
a) Da würd ich sagen, da [mm] Rang\phi \leq dim_{K} [/mm] V und da [mm] dim_{K}V [/mm] < [mm] dim_{K}W [/mm] folgt, dass [mm] Rang\phi [/mm] < [mm] dim_{K}W [/mm] und deshalb: [mm] \phi [/mm] ist nicht surjektiv.
und die andere Richtung:
[mm] \phi [/mm] ist nicht surjektiv, daraus folgt, dass [mm] Rang\phi \not= dim_{K}W [/mm]
und weiter?
b) müsste dann ähnlich gehen...

Vielen Dank im Voraus,
Rebell der Sonne

        
Bezug
Bild finden/In-&Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 07:41 Do 22.01.2009
Autor: fred97


> a) Es sei [mm]\phi:\IR^2 \to \IR^2[/mm] eine lineare Abbildung.
> Finden Sie das Bild einer Geraden unter [mm]\phi.[/mm]
>  
> b) Bestimmen Sie das Bild des Einheitskreises
> [mm]x_{1}^2+x_{2}^2=1[/mm] unter der linearen Abbildung
> [mm]\phi\vektor{x_{1} \\ x_{2}}[/mm] = [mm]\vektor{3x_{1} \\ 2x_{2}}.[/mm]
>  
> Es seien V und W zwei endlichdimensionale K-Vektorräume.
> Beweisen Sie:
>  a) [mm]dim_{K}V[/mm] < [mm]dim_{K}W \gdw[/mm] Es gibt keine lineare
> Abbildung [mm]\phi:[/mm] V [mm]\to[/mm] W, die surjektiv ist.
>  b) [mm]dim_{K}V[/mm] > [mm]dim_{K}W \gdw[/mm] Es gibt keine lineare

> Abbildung [mm]\phi:[/mm] V [mm]\to[/mm] W, die injektiv ist.
>  Hallo!
>  
> ad 1)
>  a) Was ist das Bild einer Geraden "unter" [mm]\phi?[/mm] Heißt das,
> alle Vektoren aus [mm]\IR^2,[/mm] mit denen ich mittels [mm]\phi[/mm] eine
> Gerade erhalte? Wie finde ich das Bild, wenn keine
> Abbildung gegeben ist?


Hallo,

Eine Gerade im [mm] \IR^2 [/mm] ist gegeben durch

      $x = a+tb$ mit  Aufpunkt a [mm] \in \IR^2 [/mm] und Richtungsvektor  b [mm] \in \IR^2 [/mm]  (t [mm] \in \IR) [/mm]

Da [mm] \phi [/mm] linear ist, folgt:

    [mm] $\phi [/mm] (x) =  [mm] \phi [/mm] (a) + t  [mm] \phi [/mm] (b)$


Also ist das Bild der Geraden unter $ [mm] \phi [/mm] $  die Gerade mit Aufpunkt [mm] \phi [/mm] (a) und Richtungsvektor [mm] \phi [/mm] (b)






>  b) Ich suche das Bild des Einheitskreises unter [mm]\phi.[/mm] Das
> heißt doch, wenn ich einsetzte, dass ich alle Vektoren
> finden muss, für die gilt:
>  [mm](3x_{1})^2+(2x_{2})^2=1[/mm]
>  Wie finde ich die?


Hier eignen sich Polarkoordinaten: [mm] x_1= [/mm] cost, [mm] x_2 [/mm] = sint

Dann ist $ [mm] \phi\vektor{x_{1} \\ x_{2}} [/mm] $ = $ [mm] \vektor{3cost \\ 2sint}. [/mm] $

Setze [mm] y_1= [/mm] 3cost, [mm] y_2 [/mm] = 2sint, dann gilt: [mm] \bruch{y_1^2}{9}+\bruch{y_2^2}{4} [/mm] = 1


Das Bild des Einheitskreises unter $ [mm] \phi [/mm] $ ist also eine Ellipse.



FRED




>  
> ad 2) Von der Logik her, sind die Aussagen klar, nur, wie
> beweise ich die Aussagen?
>  a) Da würd ich sagen, da [mm]Rang\phi \leq dim_{K}[/mm] V und da
> [mm]dim_{K}V[/mm] < [mm]dim_{K}W[/mm] folgt, dass [mm]Rang\phi[/mm] < [mm]dim_{K}W[/mm] und
> deshalb: [mm]\phi[/mm] ist nicht surjektiv.
>  und die andere Richtung:
>  [mm]\phi[/mm] ist nicht surjektiv, daraus folgt, dass [mm]Rang\phi \not= dim_{K}W[/mm]
> und weiter?
>  b) müsste dann ähnlich gehen...
>  
> Vielen Dank im Voraus,
>  Rebell der Sonne


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]