matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBild (f)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Bild (f)
Bild (f) < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild (f): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Fr 05.06.2009
Autor: aga88

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo! Ich stehe nun kurz vor meiner Klausur zur Linearen Algebra. Beim Lernen bin ich aber auf das Thema Bild und Kern gestossen. Wie man Kern berechnet weiß ich. Nur erschließt sich für mich das Bild überhaupt nicht.

Die Definition Bild (A)= [mm] \{Ax | x im Definitionsbereich} [/mm] sagt mir überhaupt nix.

Kann mir bitte jemand Schritt für Schritt schreiben was zu tun ist? Das hatte ja auch etwas mit Erzeugendensystem gemeinsam. Aber selbst das wusste ich nicht, wie ich das anwenden sollte.

Bin für jede Hilfe dankbar.

LG

        
Bezug
Bild (f): Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Fr 05.06.2009
Autor: angela.h.b.


> Die Definition Bild (A)= [mm]\{Ax | x im Definitionsbereich}[/mm]
> sagt mir überhaupt nix.

Hallo,

im Bild sind alle die Vektoren,  die Du erhältst, wenn Du die Matrix A mit jeden erlaubten Vektor x multiplizierst.

Du kannst zeigen, daß das Bild wieder ein VR ist.

> Kann mir bitte jemand Schritt für Schritt schreiben was zu
> tun ist? Das hatte ja auch etwas mit Erzeugendensystem
> gemeinsam. Aber selbst das wusste ich nicht, wie ich das
> anwenden sollte.

Das Bild einer Matrix ist der Raum, der von den Spaltenvektoren erzeugt wird.

Interessieren tut man sich meist für zweierlei: Dimension und Basis.

Bring hierfür die Matrix auf Zeilenstufenform.

Der Rang ist die Dimension des Bildes.

Die Basis findest Du so:

schau, in welchen Spalten in der ZSF die führenden Elemente der Nichtnullzeilen stehen.

Die entsprechenden Spalten der ursprünglichen Matrix bilden eine Basis des Bildes.


Bei Rckfragen poste btte eine konkrete Matrix und ihre ZSF mit.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]