matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBild einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Bild einer Matrix
Bild einer Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild einer Matrix: Formale Schreibweise
Status: (Frage) beantwortet Status 
Datum: 15:52 Mo 27.11.2006
Autor: makw

Kann mir jemand am Beispiel eine Musterlösung beschreiben, wie ich "Bild der Matrix" formal richtig aufschreiben kann?

[mm] \pmat{ 1 & 1 & 1 \\ 2 & -2 & 2 \\ 3 & 3 & 3} [/mm]

Dimension ist 2

Danke im Vorraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bild einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Mo 27.11.2006
Autor: Martin243

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,

es reicht, wenn du deine Frage einmal ins Forum stellst.

Zur Aufgabe:
Um das Bild einer Funktion $f:U\rightarrow V$darzustellen, benötigst du eine Basis des Bildes.
Dazu nimmst du eine Beliebige Basis des ursprünglichen Vektorraums und wendest auf die Vektoren dieses Basis deine Funktion an.
Du bekommst dadurch eine Menge von Vektoren, die ein Erzeugendensystem des Bildes darstellt. Nun musst du so viele Vektoren aus dieser Menge wegnehmen, bis die Menge linear unabhängig ist und sich daraus dennoch der gesamte Bildraum erzeugen lässt. (Das du die Dimension schon kennst, weißt du ja, dass zwei Vektoren $\vec{v_1}$ und $\vec{v_2}$ übrigbleiben müssen).

Dann kannst du schreiben:
$Bild(f) = \left\{\vec{x}\in V | \vec{x} = s\cdot{}\vec{v_1}+t\cdot{}\vec[v_2},s,t\in\IK\right\}$,
wobei $\IK$ der zugrundeliegende Körper ist, oder kurz
$Bild(f) = \left<\left\{\vec{v_1},\vec{v_2}\right\}\right>$.


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]