Bild & Urbild linearer Abb. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:32 Mi 21.03.2007 | Autor: | Zerwas |
Aufgabe | Es seien V = [mm] \IR^3 [/mm] und W = [mm] \IR^4 [/mm] gegeben. Bezüglich der Standardbasen definieren wir eine lineare Abbildung [mm] \phi: V\rightarrow [/mm] W durch A = [mm] \pmat{ -1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 1 }.
[/mm]
(a) Für welche Werte [mm] a\in \IR [/mm] liegt der Vektor [mm] w_a [/mm] := [mm] \pmat{ a \\ 1 \\ -1 \\ 1} [/mm] in [mm] \phi(V)? [/mm]
(b) Geben Sie für diese [mm] a\in \IR [/mm] die Urbilder von [mm] w_a [/mm] in V an .
(c) Was ist der Rang von [mm] \phi? [/mm] |
Eigentlich geht es nur darum ob ich die Aufgabe richtig verstanden und den richtigen Weg zur Lösung angewandt habe.
(a) ein Gleichungssystem bilden: [mm] \pmat{ -1 & 1 & 0 & a \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 2 & 0 & 1 & 1 } [/mm] und mit gauss auflösen daraus folgt: [mm] \pmat{ 0 & 0 & 0 & a+1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & -1 }
[/mm]
also ist das Gleichungssystem lösbar, wenn a=-1 und damit gehört [mm] w_a [/mm] für diesen Wert zum Bild von [mm] \phi
[/mm]
(b) Die Urbilder ergeben sich aus der Lösung des Gleichungssystems:
[mm] v_3=1, v_2=-1, v_3=0 [/mm] => [mm] v=\pmat{ 0 \\ -1 \\ 1 } [/mm] ist also Urbinl von [mm] w_a [/mm] in V
(c) Der Rang von [mm] \phi [/mm] ergibt sich aus dem Glaichungssystem in (a) => [mm] rg(\phi) [/mm] = 3
Wie gesagt geht es nicht um Rechenfehler sondern darum ob mein Lösungsweg richtig ist.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:46 Mi 21.03.2007 | Autor: | Zerwas |
Danke ... Kommentare verstanden und beherzigt ;)
|
|
|
|