matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBild & Kern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Bild & Kern
Bild & Kern < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild & Kern: Bild & Kern bestimmen
Status: (Frage) beantwortet Status 
Datum: 20:43 Di 08.05.2012
Autor: jackyooo

Aufgabe
Gegeben seien folgende reelle Matrizen

P= [mm] \begin{bmatrix} -3 & -1 & -1\\ 0 & -1 & -1\\ \end{bmatrix} [/mm]

Q= [mm] \begin{bmatrix} 1& -1\\ -1 & 2\\ 1 & 1\\ \end{bmatrix} [/mm]

a) Geben Sie die Abbildungsvorschrit von P o Q an.
b) Stellen Sie Bild und Kern von P o Q möglichst einfach dar.


Hey,

ich will gerade die beiden obrigen Aufgaben lösen.
Bedeutet das mit der Abbildungsvorschrit einfach, dass ich schreibe:

[mm]\vec x |-> P * Q * \vec x = \begin{bmatrix} -3 & 0\\ 0 & -3\\ \end{bmatrix} * \vec x[/mm]
?

Und zu b): Der Kern ist doch definiert als
[mm]M * \vec x = \vec 0[/mm] oder?
sprich:

[mm]\begin{bmatrix} -3 & 0\\ 0 & -3\\ \end{bmatrix} * \begin{bmatrix} x\\ y\\ \end{bmatrix} = \begin{bmatrix} -3x\\ -3y\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}[/mm]

Ist das Korrekt? Was ist eigentlich die genaue Bedeutung des Kerns? Und wie berechne ich das Bild? Ist Bild das selbe wie Urbild?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bild & Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Di 08.05.2012
Autor: Schadowmaster

moin,

> Gegeben seien folgende reelle Matrizen
>  
> P= [mm]\begin{bmatrix} -3 & -1 & -1\\ 0 & -1 & -1\\ \end{bmatrix}[/mm]
>  
> Q= [mm]\begin{bmatrix} 1& -1\\ -1 & 2\\ 1 & 1\\ \end{bmatrix}[/mm]
>  
> a) Geben Sie die Abbildungsvorschrit von P o Q an.
>  b) Stellen Sie Bild und Kern von P o Q möglichst einfach
> dar.
>  
> Hey,
>  
> ich will gerade die beiden obrigen Aufgaben lösen.
>  Bedeutet das mit der Abbildungsvorschrit einfach, dass ich
> schreibe:
>  
> [mm]\vec x |-> P * Q * \vec x = \begin{bmatrix} -3 & 0\\ 0 & -3\\ \end{bmatrix} * \vec x[/mm]
>  
> ?

Wenn du $P*Q$ richtig berechnet hast (was ich einfach mal vermute^^) dann ja.

> Und zu b): Der Kern ist doch definiert als
>  [mm]M * \vec x = \vec 0[/mm] oder?
>  sprich:

Nicht ganz.
Der Kern ist die Menge aller $x$, die obige Gleichung erfüllen.

> [mm]\begin{bmatrix} -3 & 0\\ 0 & -3\\ \end{bmatrix} * \begin{bmatrix} x\\ y\\ \end{bmatrix} = \begin{bmatrix} -3x\\ -3y\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}[/mm]
>  
> Ist das Korrekt? Was ist eigentlich die genaue Bedeutung
> des Kerns?

Wie gesagt brauchst du jetzt noch die Menge aller Elemente, die dies erfüllen.
Der Kern ist also alles, was von der Matrix auf 0 abgebildet wird.

> Und wie berechne ich das Bild? Ist Bild das
> selbe wie Urbild?

Nein, das ist ein großer Unterschied.
Der Begriff des Urbilds macht hier gar keinen Sinn; ich würd die Definition an deiner Stelle nochmal nachschlagen.
Das Bild ist die Menge aller $PQ*x$, also die Menge aller Vektoren, die darstellbar sind.
Also wenn man es mal für Abbildungen betrachtet:
$f: M [mm] \to [/mm] N, x [mm] \mapsto [/mm] f(x)$, dann ist
Bild$(f) := [mm] \{ y \in N \mid \exists x \in M : f(x) = y \}$, [/mm] also die Menge aller $y [mm] \in [/mm] N$, die unter $f$ als Funktionswert angenommen werden.
Das Bild ist immer ein Teil des Wertebereichs, aber nicht immer der gesamte (ist es der gesamte, so heißt die Abbildung surjektiv).
Wie du es berechnest darfst du dir mal überlegen. Im Allgemeinen hilft der Gaußalgorithmus, aber bei deiner besonderen Form von $P*Q$ sollte das auch ohne - also durch scharfes Hinsehen - machbar sein.

lg

Schadow



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]